MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgr3v3e3cycl Structured version   Visualization version   Unicode version

Theorem upgr3v3e3cycl 27040
Description: If there is a cycle of length 3 in a pseudograph, there are three distinct vertices in the graph which are mutually connected by edges. (Contributed by Alexander van der Vekens, 9-Nov-2017.)
Hypotheses
Ref Expression
upgr3v3e3cycl.e  |-  E  =  (Edg `  G )
upgr3v3e3cycl.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
upgr3v3e3cycl  |-  ( ( G  e. UPGraph  /\  F (Cycles `  G ) P  /\  ( # `  F )  =  3 )  ->  E. a  e.  V  E. b  e.  V  E. c  e.  V  ( ( { a ,  b }  e.  E  /\  { b ,  c }  e.  E  /\  { c ,  a }  e.  E )  /\  ( a  =/=  b  /\  b  =/=  c  /\  c  =/=  a ) ) )
Distinct variable groups:    E, a,
b, c    P, a,
b, c    V, a,
b, c
Allowed substitution hints:    F( a, b, c)    G( a, b, c)

Proof of Theorem upgr3v3e3cycl
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 cyclprop 26688 . . 3  |-  ( F (Cycles `  G ) P  ->  ( F (Paths `  G ) P  /\  ( P `  0 )  =  ( P `  ( # `  F ) ) ) )
2 pthiswlk 26623 . . . . 5  |-  ( F (Paths `  G ) P  ->  F (Walks `  G ) P )
3 upgr3v3e3cycl.e . . . . . . . . . 10  |-  E  =  (Edg `  G )
43upgrwlkvtxedg 26541 . . . . . . . . 9  |-  ( ( G  e. UPGraph  /\  F (Walks `  G ) P )  ->  A. k  e.  ( 0..^ ( # `  F
) ) { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  e.  E )
5 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( (
# `  F )  =  3  ->  ( P `  ( # `  F
) )  =  ( P `  3 ) )
65eqeq2d 2632 . . . . . . . . . . . . . 14  |-  ( (
# `  F )  =  3  ->  (
( P `  0
)  =  ( P `
 ( # `  F
) )  <->  ( P `  0 )  =  ( P `  3
) ) )
76anbi2d 740 . . . . . . . . . . . . 13  |-  ( (
# `  F )  =  3  ->  (
( F (Paths `  G ) P  /\  ( P `  0 )  =  ( P `  ( # `  F ) ) )  <->  ( F
(Paths `  G ) P  /\  ( P ` 
0 )  =  ( P `  3 ) ) ) )
8 oveq2 6658 . . . . . . . . . . . . . . . 16  |-  ( (
# `  F )  =  3  ->  (
0..^ ( # `  F
) )  =  ( 0..^ 3 ) )
9 fzo0to3tp 12554 . . . . . . . . . . . . . . . 16  |-  ( 0..^ 3 )  =  {
0 ,  1 ,  2 }
108, 9syl6eq 2672 . . . . . . . . . . . . . . 15  |-  ( (
# `  F )  =  3  ->  (
0..^ ( # `  F
) )  =  {
0 ,  1 ,  2 } )
1110raleqdv 3144 . . . . . . . . . . . . . 14  |-  ( (
# `  F )  =  3  ->  ( A. k  e.  (
0..^ ( # `  F
) ) { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  e.  E 
<-> 
A. k  e.  {
0 ,  1 ,  2 }  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  e.  E ) )
12 c0ex 10034 . . . . . . . . . . . . . . 15  |-  0  e.  _V
13 1ex 10035 . . . . . . . . . . . . . . 15  |-  1  e.  _V
14 2ex 11092 . . . . . . . . . . . . . . 15  |-  2  e.  _V
15 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( k  =  0  ->  ( P `  k )  =  ( P ` 
0 ) )
16 oveq1 6657 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  0  ->  (
k  +  1 )  =  ( 0  +  1 ) )
17 0p1e1 11132 . . . . . . . . . . . . . . . . . . 19  |-  ( 0  +  1 )  =  1
1816, 17syl6eq 2672 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  0  ->  (
k  +  1 )  =  1 )
1918fveq2d 6195 . . . . . . . . . . . . . . . . 17  |-  ( k  =  0  ->  ( P `  ( k  +  1 ) )  =  ( P ` 
1 ) )
2015, 19preq12d 4276 . . . . . . . . . . . . . . . 16  |-  ( k  =  0  ->  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  =  { ( P ` 
0 ) ,  ( P `  1 ) } )
2120eleq1d 2686 . . . . . . . . . . . . . . 15  |-  ( k  =  0  ->  ( { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  e.  E  <->  { ( P `  0 ) ,  ( P ` 
1 ) }  e.  E ) )
22 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( k  =  1  ->  ( P `  k )  =  ( P ` 
1 ) )
23 oveq1 6657 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  1  ->  (
k  +  1 )  =  ( 1  +  1 ) )
24 1p1e2 11134 . . . . . . . . . . . . . . . . . . 19  |-  ( 1  +  1 )  =  2
2523, 24syl6eq 2672 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  1  ->  (
k  +  1 )  =  2 )
2625fveq2d 6195 . . . . . . . . . . . . . . . . 17  |-  ( k  =  1  ->  ( P `  ( k  +  1 ) )  =  ( P ` 
2 ) )
2722, 26preq12d 4276 . . . . . . . . . . . . . . . 16  |-  ( k  =  1  ->  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  =  { ( P ` 
1 ) ,  ( P `  2 ) } )
2827eleq1d 2686 . . . . . . . . . . . . . . 15  |-  ( k  =  1  ->  ( { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  e.  E  <->  { ( P `  1 ) ,  ( P ` 
2 ) }  e.  E ) )
29 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( k  =  2  ->  ( P `  k )  =  ( P ` 
2 ) )
30 oveq1 6657 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  2  ->  (
k  +  1 )  =  ( 2  +  1 ) )
31 2p1e3 11151 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  +  1 )  =  3
3230, 31syl6eq 2672 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  2  ->  (
k  +  1 )  =  3 )
3332fveq2d 6195 . . . . . . . . . . . . . . . . 17  |-  ( k  =  2  ->  ( P `  ( k  +  1 ) )  =  ( P ` 
3 ) )
3429, 33preq12d 4276 . . . . . . . . . . . . . . . 16  |-  ( k  =  2  ->  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  =  { ( P ` 
2 ) ,  ( P `  3 ) } )
3534eleq1d 2686 . . . . . . . . . . . . . . 15  |-  ( k  =  2  ->  ( { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  e.  E  <->  { ( P `  2 ) ,  ( P ` 
3 ) }  e.  E ) )
3612, 13, 14, 21, 28, 35raltp 4240 . . . . . . . . . . . . . 14  |-  ( A. k  e.  { 0 ,  1 ,  2 }  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  e.  E  <->  ( { ( P ` 
0 ) ,  ( P `  1 ) }  e.  E  /\  { ( P `  1
) ,  ( P `
 2 ) }  e.  E  /\  {
( P `  2
) ,  ( P `
 3 ) }  e.  E ) )
3711, 36syl6bb 276 . . . . . . . . . . . . 13  |-  ( (
# `  F )  =  3  ->  ( A. k  e.  (
0..^ ( # `  F
) ) { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  e.  E 
<->  ( { ( P `
 0 ) ,  ( P `  1
) }  e.  E  /\  { ( P ` 
1 ) ,  ( P `  2 ) }  e.  E  /\  { ( P `  2
) ,  ( P `
 3 ) }  e.  E ) ) )
387, 37anbi12d 747 . . . . . . . . . . . 12  |-  ( (
# `  F )  =  3  ->  (
( ( F (Paths `  G ) P  /\  ( P `  0 )  =  ( P `  ( # `  F ) ) )  /\  A. k  e.  ( 0..^ ( # `  F
) ) { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  e.  E )  <->  ( ( F (Paths `  G ) P  /\  ( P ` 
0 )  =  ( P `  3 ) )  /\  ( { ( P `  0
) ,  ( P `
 1 ) }  e.  E  /\  {
( P `  1
) ,  ( P `
 2 ) }  e.  E  /\  {
( P `  2
) ,  ( P `
 3 ) }  e.  E ) ) ) )
39 upgr3v3e3cycl.v . . . . . . . . . . . . . . . . . . 19  |-  V  =  (Vtx `  G )
4039wlkp 26512 . . . . . . . . . . . . . . . . . 18  |-  ( F (Walks `  G ) P  ->  P : ( 0 ... ( # `  F ) ) --> V )
41 oveq2 6658 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
# `  F )  =  3  ->  (
0 ... ( # `  F
) )  =  ( 0 ... 3 ) )
4241feq2d 6031 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
# `  F )  =  3  ->  ( P : ( 0 ... ( # `  F
) ) --> V  <->  P :
( 0 ... 3
) --> V ) )
43 id 22 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( P : ( 0 ... 3 ) --> V  ->  P : ( 0 ... 3 ) --> V )
44 3nn0 11310 . . . . . . . . . . . . . . . . . . . . . . 23  |-  3  e.  NN0
45 0elfz 12436 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 3  e.  NN0  ->  0  e.  ( 0 ... 3
) )
4644, 45mp1i 13 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( P : ( 0 ... 3 ) --> V  -> 
0  e.  ( 0 ... 3 ) )
4743, 46ffvelrnd 6360 . . . . . . . . . . . . . . . . . . . . 21  |-  ( P : ( 0 ... 3 ) --> V  -> 
( P `  0
)  e.  V )
48 1nn0 11308 . . . . . . . . . . . . . . . . . . . . . 22  |-  1  e.  NN0
49 1lt3 11196 . . . . . . . . . . . . . . . . . . . . . 22  |-  1  <  3
50 fvffz0 12457 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( 3  e.  NN0  /\  1  e.  NN0  /\  1  <  3 )  /\  P : ( 0 ... 3 ) --> V )  ->  ( P ` 
1 )  e.  V
)
5150ex 450 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 3  e.  NN0  /\  1  e.  NN0  /\  1  <  3 )  ->  ( P : ( 0 ... 3 ) --> V  -> 
( P `  1
)  e.  V ) )
5244, 48, 49, 51mp3an 1424 . . . . . . . . . . . . . . . . . . . . 21  |-  ( P : ( 0 ... 3 ) --> V  -> 
( P `  1
)  e.  V )
53 2nn0 11309 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  e.  NN0
54 2lt3 11195 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  <  3
55 fvffz0 12457 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( 3  e.  NN0  /\  2  e.  NN0  /\  2  <  3 )  /\  P : ( 0 ... 3 ) --> V )  ->  ( P ` 
2 )  e.  V
)
5655ex 450 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 3  e.  NN0  /\  2  e.  NN0  /\  2  <  3 )  ->  ( P : ( 0 ... 3 ) --> V  -> 
( P `  2
)  e.  V ) )
5744, 53, 54, 56mp3an 1424 . . . . . . . . . . . . . . . . . . . . 21  |-  ( P : ( 0 ... 3 ) --> V  -> 
( P `  2
)  e.  V )
5847, 52, 573jca 1242 . . . . . . . . . . . . . . . . . . . 20  |-  ( P : ( 0 ... 3 ) --> V  -> 
( ( P ` 
0 )  e.  V  /\  ( P `  1
)  e.  V  /\  ( P `  2 )  e.  V ) )
5942, 58syl6bi 243 . . . . . . . . . . . . . . . . . . 19  |-  ( (
# `  F )  =  3  ->  ( P : ( 0 ... ( # `  F
) ) --> V  -> 
( ( P ` 
0 )  e.  V  /\  ( P `  1
)  e.  V  /\  ( P `  2 )  e.  V ) ) )
6059com12 32 . . . . . . . . . . . . . . . . . 18  |-  ( P : ( 0 ... ( # `  F
) ) --> V  -> 
( ( # `  F
)  =  3  -> 
( ( P ` 
0 )  e.  V  /\  ( P `  1
)  e.  V  /\  ( P `  2 )  e.  V ) ) )
612, 40, 603syl 18 . . . . . . . . . . . . . . . . 17  |-  ( F (Paths `  G ) P  ->  ( ( # `  F )  =  3  ->  ( ( P `
 0 )  e.  V  /\  ( P `
 1 )  e.  V  /\  ( P `
 2 )  e.  V ) ) )
6261adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( F (Paths `  G
) P  /\  ( P `  0 )  =  ( P ` 
3 ) )  -> 
( ( # `  F
)  =  3  -> 
( ( P ` 
0 )  e.  V  /\  ( P `  1
)  e.  V  /\  ( P `  2 )  e.  V ) ) )
6362adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( F (Paths `  G ) P  /\  ( P `  0 )  =  ( P ` 
3 ) )  /\  ( { ( P ` 
0 ) ,  ( P `  1 ) }  e.  E  /\  { ( P `  1
) ,  ( P `
 2 ) }  e.  E  /\  {
( P `  2
) ,  ( P `
 3 ) }  e.  E ) )  ->  ( ( # `  F )  =  3  ->  ( ( P `
 0 )  e.  V  /\  ( P `
 1 )  e.  V  /\  ( P `
 2 )  e.  V ) ) )
6463impcom 446 . . . . . . . . . . . . . 14  |-  ( ( ( # `  F
)  =  3  /\  ( ( F (Paths `  G ) P  /\  ( P `  0 )  =  ( P ` 
3 ) )  /\  ( { ( P ` 
0 ) ,  ( P `  1 ) }  e.  E  /\  { ( P `  1
) ,  ( P `
 2 ) }  e.  E  /\  {
( P `  2
) ,  ( P `
 3 ) }  e.  E ) ) )  ->  ( ( P `  0 )  e.  V  /\  ( P `  1 )  e.  V  /\  ( P `  2 )  e.  V ) )
65 preq2 4269 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( P `  3 )  =  ( P ` 
0 )  ->  { ( P `  2 ) ,  ( P ` 
3 ) }  =  { ( P ` 
2 ) ,  ( P `  0 ) } )
6665eqcoms 2630 . . . . . . . . . . . . . . . . . . 19  |-  ( ( P `  0 )  =  ( P ` 
3 )  ->  { ( P `  2 ) ,  ( P ` 
3 ) }  =  { ( P ` 
2 ) ,  ( P `  0 ) } )
6766adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( F (Paths `  G
) P  /\  ( P `  0 )  =  ( P ` 
3 ) )  ->  { ( P ` 
2 ) ,  ( P `  3 ) }  =  { ( P `  2 ) ,  ( P ` 
0 ) } )
6867eleq1d 2686 . . . . . . . . . . . . . . . . 17  |-  ( ( F (Paths `  G
) P  /\  ( P `  0 )  =  ( P ` 
3 ) )  -> 
( { ( P `
 2 ) ,  ( P `  3
) }  e.  E  <->  { ( P `  2
) ,  ( P `
 0 ) }  e.  E ) )
69683anbi3d 1405 . . . . . . . . . . . . . . . 16  |-  ( ( F (Paths `  G
) P  /\  ( P `  0 )  =  ( P ` 
3 ) )  -> 
( ( { ( P `  0 ) ,  ( P ` 
1 ) }  e.  E  /\  { ( P `
 1 ) ,  ( P `  2
) }  e.  E  /\  { ( P ` 
2 ) ,  ( P `  3 ) }  e.  E )  <-> 
( { ( P `
 0 ) ,  ( P `  1
) }  e.  E  /\  { ( P ` 
1 ) ,  ( P `  2 ) }  e.  E  /\  { ( P `  2
) ,  ( P `
 0 ) }  e.  E ) ) )
7069biimpa 501 . . . . . . . . . . . . . . 15  |-  ( ( ( F (Paths `  G ) P  /\  ( P `  0 )  =  ( P ` 
3 ) )  /\  ( { ( P ` 
0 ) ,  ( P `  1 ) }  e.  E  /\  { ( P `  1
) ,  ( P `
 2 ) }  e.  E  /\  {
( P `  2
) ,  ( P `
 3 ) }  e.  E ) )  ->  ( { ( P `  0 ) ,  ( P ` 
1 ) }  e.  E  /\  { ( P `
 1 ) ,  ( P `  2
) }  e.  E  /\  { ( P ` 
2 ) ,  ( P `  0 ) }  e.  E ) )
7170adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( # `  F
)  =  3  /\  ( ( F (Paths `  G ) P  /\  ( P `  0 )  =  ( P ` 
3 ) )  /\  ( { ( P ` 
0 ) ,  ( P `  1 ) }  e.  E  /\  { ( P `  1
) ,  ( P `
 2 ) }  e.  E  /\  {
( P `  2
) ,  ( P `
 3 ) }  e.  E ) ) )  ->  ( {
( P `  0
) ,  ( P `
 1 ) }  e.  E  /\  {
( P `  1
) ,  ( P `
 2 ) }  e.  E  /\  {
( P `  2
) ,  ( P `
 0 ) }  e.  E ) )
72 simpll 790 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F (Paths `  G ) P  /\  ( P `  0 )  =  ( P ` 
3 ) )  /\  ( # `  F )  =  3 )  ->  F (Paths `  G ) P )
73 breq2 4657 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
# `  F )  =  3  ->  (
1  <  ( # `  F
)  <->  1  <  3
) )
7449, 73mpbiri 248 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
# `  F )  =  3  ->  1  <  ( # `  F
) )
7574adantl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F (Paths `  G ) P  /\  ( P `  0 )  =  ( P ` 
3 ) )  /\  ( # `  F )  =  3 )  -> 
1  <  ( # `  F
) )
76 3nn 11186 . . . . . . . . . . . . . . . . . . . . . 22  |-  3  e.  NN
77 lbfzo0 12507 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 0  e.  ( 0..^ 3 )  <->  3  e.  NN )
7876, 77mpbir 221 . . . . . . . . . . . . . . . . . . . . 21  |-  0  e.  ( 0..^ 3 )
7978, 8syl5eleqr 2708 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
# `  F )  =  3  ->  0  e.  ( 0..^ ( # `  F ) ) )
8079adantl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F (Paths `  G ) P  /\  ( P `  0 )  =  ( P ` 
3 ) )  /\  ( # `  F )  =  3 )  -> 
0  e.  ( 0..^ ( # `  F
) ) )
81 pthdadjvtx 26626 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F (Paths `  G
) P  /\  1  <  ( # `  F
)  /\  0  e.  ( 0..^ ( # `  F
) ) )  -> 
( P `  0
)  =/=  ( P `
 ( 0  +  1 ) ) )
82 1e0p1 11552 . . . . . . . . . . . . . . . . . . . . . 22  |-  1  =  ( 0  +  1 )
8382fveq2i 6194 . . . . . . . . . . . . . . . . . . . . 21  |-  ( P `
 1 )  =  ( P `  (
0  +  1 ) )
8483neeq2i 2859 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( P `  0 )  =/=  ( P ` 
1 )  <->  ( P `  0 )  =/=  ( P `  (
0  +  1 ) ) )
8581, 84sylibr 224 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F (Paths `  G
) P  /\  1  <  ( # `  F
)  /\  0  e.  ( 0..^ ( # `  F
) ) )  -> 
( P `  0
)  =/=  ( P `
 1 ) )
8672, 75, 80, 85syl3anc 1326 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F (Paths `  G ) P  /\  ( P `  0 )  =  ( P ` 
3 ) )  /\  ( # `  F )  =  3 )  -> 
( P `  0
)  =/=  ( P `
 1 ) )
87 elfzo0 12508 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 1  e.  ( 0..^ 3 )  <->  ( 1  e. 
NN0  /\  3  e.  NN  /\  1  <  3
) )
8848, 76, 49, 87mpbir3an 1244 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  ( 0..^ 3 )
8988, 8syl5eleqr 2708 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
# `  F )  =  3  ->  1  e.  ( 0..^ ( # `  F ) ) )
9089adantl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F (Paths `  G ) P  /\  ( P `  0 )  =  ( P ` 
3 ) )  /\  ( # `  F )  =  3 )  -> 
1  e.  ( 0..^ ( # `  F
) ) )
91 pthdadjvtx 26626 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F (Paths `  G
) P  /\  1  <  ( # `  F
)  /\  1  e.  ( 0..^ ( # `  F
) ) )  -> 
( P `  1
)  =/=  ( P `
 ( 1  +  1 ) ) )
92 df-2 11079 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  =  ( 1  +  1 )
9392fveq2i 6194 . . . . . . . . . . . . . . . . . . . . 21  |-  ( P `
 2 )  =  ( P `  (
1  +  1 ) )
9493neeq2i 2859 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( P `  1 )  =/=  ( P ` 
2 )  <->  ( P `  1 )  =/=  ( P `  (
1  +  1 ) ) )
9591, 94sylibr 224 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F (Paths `  G
) P  /\  1  <  ( # `  F
)  /\  1  e.  ( 0..^ ( # `  F
) ) )  -> 
( P `  1
)  =/=  ( P `
 2 ) )
9672, 75, 90, 95syl3anc 1326 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F (Paths `  G ) P  /\  ( P `  0 )  =  ( P ` 
3 ) )  /\  ( # `  F )  =  3 )  -> 
( P `  1
)  =/=  ( P `
 2 ) )
97 elfzo0 12508 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 2  e.  ( 0..^ 3 )  <->  ( 2  e. 
NN0  /\  3  e.  NN  /\  2  <  3
) )
9853, 76, 54, 97mpbir3an 1244 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  e.  ( 0..^ 3 )
9998, 8syl5eleqr 2708 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
# `  F )  =  3  ->  2  e.  ( 0..^ ( # `  F ) ) )
10099adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( F (Paths `  G ) P  /\  ( P `  0 )  =  ( P ` 
3 ) )  /\  ( # `  F )  =  3 )  -> 
2  e.  ( 0..^ ( # `  F
) ) )
101 pthdadjvtx 26626 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F (Paths `  G
) P  /\  1  <  ( # `  F
)  /\  2  e.  ( 0..^ ( # `  F
) ) )  -> 
( P `  2
)  =/=  ( P `
 ( 2  +  1 ) ) )
10272, 75, 100, 101syl3anc 1326 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F (Paths `  G ) P  /\  ( P `  0 )  =  ( P ` 
3 ) )  /\  ( # `  F )  =  3 )  -> 
( P `  2
)  =/=  ( P `
 ( 2  +  1 ) ) )
103 neeq2 2857 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( P `  0 )  =  ( P ` 
3 )  ->  (
( P `  2
)  =/=  ( P `
 0 )  <->  ( P `  2 )  =/=  ( P `  3
) ) )
104 df-3 11080 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  3  =  ( 2  +  1 )
105104fveq2i 6194 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( P `
 3 )  =  ( P `  (
2  +  1 ) )
106105neeq2i 2859 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( P `  2 )  =/=  ( P ` 
3 )  <->  ( P `  2 )  =/=  ( P `  (
2  +  1 ) ) )
107103, 106syl6bb 276 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( P `  0 )  =  ( P ` 
3 )  ->  (
( P `  2
)  =/=  ( P `
 0 )  <->  ( P `  2 )  =/=  ( P `  (
2  +  1 ) ) ) )
108107adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F (Paths `  G
) P  /\  ( P `  0 )  =  ( P ` 
3 ) )  -> 
( ( P ` 
2 )  =/=  ( P `  0 )  <->  ( P `  2 )  =/=  ( P `  ( 2  +  1 ) ) ) )
109108adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F (Paths `  G ) P  /\  ( P `  0 )  =  ( P ` 
3 ) )  /\  ( # `  F )  =  3 )  -> 
( ( P ` 
2 )  =/=  ( P `  0 )  <->  ( P `  2 )  =/=  ( P `  ( 2  +  1 ) ) ) )
110102, 109mpbird 247 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F (Paths `  G ) P  /\  ( P `  0 )  =  ( P ` 
3 ) )  /\  ( # `  F )  =  3 )  -> 
( P `  2
)  =/=  ( P `
 0 ) )
11186, 96, 1103jca 1242 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F (Paths `  G ) P  /\  ( P `  0 )  =  ( P ` 
3 ) )  /\  ( # `  F )  =  3 )  -> 
( ( P ` 
0 )  =/=  ( P `  1 )  /\  ( P `  1
)  =/=  ( P `
 2 )  /\  ( P `  2 )  =/=  ( P ` 
0 ) ) )
112111ex 450 . . . . . . . . . . . . . . . 16  |-  ( ( F (Paths `  G
) P  /\  ( P `  0 )  =  ( P ` 
3 ) )  -> 
( ( # `  F
)  =  3  -> 
( ( P ` 
0 )  =/=  ( P `  1 )  /\  ( P `  1
)  =/=  ( P `
 2 )  /\  ( P `  2 )  =/=  ( P ` 
0 ) ) ) )
113112adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( F (Paths `  G ) P  /\  ( P `  0 )  =  ( P ` 
3 ) )  /\  ( { ( P ` 
0 ) ,  ( P `  1 ) }  e.  E  /\  { ( P `  1
) ,  ( P `
 2 ) }  e.  E  /\  {
( P `  2
) ,  ( P `
 3 ) }  e.  E ) )  ->  ( ( # `  F )  =  3  ->  ( ( P `
 0 )  =/=  ( P `  1
)  /\  ( P `  1 )  =/=  ( P `  2
)  /\  ( P `  2 )  =/=  ( P `  0
) ) ) )
114113impcom 446 . . . . . . . . . . . . . 14  |-  ( ( ( # `  F
)  =  3  /\  ( ( F (Paths `  G ) P  /\  ( P `  0 )  =  ( P ` 
3 ) )  /\  ( { ( P ` 
0 ) ,  ( P `  1 ) }  e.  E  /\  { ( P `  1
) ,  ( P `
 2 ) }  e.  E  /\  {
( P `  2
) ,  ( P `
 3 ) }  e.  E ) ) )  ->  ( ( P `  0 )  =/=  ( P `  1
)  /\  ( P `  1 )  =/=  ( P `  2
)  /\  ( P `  2 )  =/=  ( P `  0
) ) )
115 preq1 4268 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  ( P ` 
0 )  ->  { a ,  b }  =  { ( P ` 
0 ) ,  b } )
116115eleq1d 2686 . . . . . . . . . . . . . . . . 17  |-  ( a  =  ( P ` 
0 )  ->  ( { a ,  b }  e.  E  <->  { ( P `  0 ) ,  b }  e.  E ) )
117 preq2 4269 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  ( P ` 
0 )  ->  { c ,  a }  =  { c ,  ( P `  0 ) } )
118117eleq1d 2686 . . . . . . . . . . . . . . . . 17  |-  ( a  =  ( P ` 
0 )  ->  ( { c ,  a }  e.  E  <->  { c ,  ( P ` 
0 ) }  e.  E ) )
119116, 1183anbi13d 1401 . . . . . . . . . . . . . . . 16  |-  ( a  =  ( P ` 
0 )  ->  (
( { a ,  b }  e.  E  /\  { b ,  c }  e.  E  /\  { c ,  a }  e.  E )  <->  ( {
( P `  0
) ,  b }  e.  E  /\  {
b ,  c }  e.  E  /\  {
c ,  ( P `
 0 ) }  e.  E ) ) )
120 neeq1 2856 . . . . . . . . . . . . . . . . 17  |-  ( a  =  ( P ` 
0 )  ->  (
a  =/=  b  <->  ( P `  0 )  =/=  b ) )
121 neeq2 2857 . . . . . . . . . . . . . . . . 17  |-  ( a  =  ( P ` 
0 )  ->  (
c  =/=  a  <->  c  =/=  ( P `  0 ) ) )
122120, 1213anbi13d 1401 . . . . . . . . . . . . . . . 16  |-  ( a  =  ( P ` 
0 )  ->  (
( a  =/=  b  /\  b  =/=  c  /\  c  =/=  a
)  <->  ( ( P `
 0 )  =/=  b  /\  b  =/=  c  /\  c  =/=  ( P `  0
) ) ) )
123119, 122anbi12d 747 . . . . . . . . . . . . . . 15  |-  ( a  =  ( P ` 
0 )  ->  (
( ( { a ,  b }  e.  E  /\  { b ,  c }  e.  E  /\  { c ,  a }  e.  E )  /\  ( a  =/=  b  /\  b  =/=  c  /\  c  =/=  a ) )  <->  ( ( { ( P ` 
0 ) ,  b }  e.  E  /\  { b ,  c }  e.  E  /\  {
c ,  ( P `
 0 ) }  e.  E )  /\  ( ( P ` 
0 )  =/=  b  /\  b  =/=  c  /\  c  =/=  ( P `  0 )
) ) ) )
124 preq2 4269 . . . . . . . . . . . . . . . . . 18  |-  ( b  =  ( P ` 
1 )  ->  { ( P `  0 ) ,  b }  =  { ( P ` 
0 ) ,  ( P `  1 ) } )
125124eleq1d 2686 . . . . . . . . . . . . . . . . 17  |-  ( b  =  ( P ` 
1 )  ->  ( { ( P ` 
0 ) ,  b }  e.  E  <->  { ( P `  0 ) ,  ( P ` 
1 ) }  e.  E ) )
126 preq1 4268 . . . . . . . . . . . . . . . . . 18  |-  ( b  =  ( P ` 
1 )  ->  { b ,  c }  =  { ( P ` 
1 ) ,  c } )
127126eleq1d 2686 . . . . . . . . . . . . . . . . 17  |-  ( b  =  ( P ` 
1 )  ->  ( { b ,  c }  e.  E  <->  { ( P `  1 ) ,  c }  e.  E ) )
128125, 1273anbi12d 1400 . . . . . . . . . . . . . . . 16  |-  ( b  =  ( P ` 
1 )  ->  (
( { ( P `
 0 ) ,  b }  e.  E  /\  { b ,  c }  e.  E  /\  { c ,  ( P `
 0 ) }  e.  E )  <->  ( {
( P `  0
) ,  ( P `
 1 ) }  e.  E  /\  {
( P `  1
) ,  c }  e.  E  /\  {
c ,  ( P `
 0 ) }  e.  E ) ) )
129 neeq2 2857 . . . . . . . . . . . . . . . . 17  |-  ( b  =  ( P ` 
1 )  ->  (
( P `  0
)  =/=  b  <->  ( P `  0 )  =/=  ( P `  1
) ) )
130 neeq1 2856 . . . . . . . . . . . . . . . . 17  |-  ( b  =  ( P ` 
1 )  ->  (
b  =/=  c  <->  ( P `  1 )  =/=  c ) )
131129, 1303anbi12d 1400 . . . . . . . . . . . . . . . 16  |-  ( b  =  ( P ` 
1 )  ->  (
( ( P ` 
0 )  =/=  b  /\  b  =/=  c  /\  c  =/=  ( P `  0 )
)  <->  ( ( P `
 0 )  =/=  ( P `  1
)  /\  ( P `  1 )  =/=  c  /\  c  =/=  ( P `  0
) ) ) )
132128, 131anbi12d 747 . . . . . . . . . . . . . . 15  |-  ( b  =  ( P ` 
1 )  ->  (
( ( { ( P `  0 ) ,  b }  e.  E  /\  { b ,  c }  e.  E  /\  { c ,  ( P `  0 ) }  e.  E )  /\  ( ( P `
 0 )  =/=  b  /\  b  =/=  c  /\  c  =/=  ( P `  0
) ) )  <->  ( ( { ( P ` 
0 ) ,  ( P `  1 ) }  e.  E  /\  { ( P `  1
) ,  c }  e.  E  /\  {
c ,  ( P `
 0 ) }  e.  E )  /\  ( ( P ` 
0 )  =/=  ( P `  1 )  /\  ( P `  1
)  =/=  c  /\  c  =/=  ( P ` 
0 ) ) ) ) )
133 preq2 4269 . . . . . . . . . . . . . . . . . 18  |-  ( c  =  ( P ` 
2 )  ->  { ( P `  1 ) ,  c }  =  { ( P ` 
1 ) ,  ( P `  2 ) } )
134133eleq1d 2686 . . . . . . . . . . . . . . . . 17  |-  ( c  =  ( P ` 
2 )  ->  ( { ( P ` 
1 ) ,  c }  e.  E  <->  { ( P `  1 ) ,  ( P ` 
2 ) }  e.  E ) )
135 preq1 4268 . . . . . . . . . . . . . . . . . 18  |-  ( c  =  ( P ` 
2 )  ->  { c ,  ( P ` 
0 ) }  =  { ( P ` 
2 ) ,  ( P `  0 ) } )
136135eleq1d 2686 . . . . . . . . . . . . . . . . 17  |-  ( c  =  ( P ` 
2 )  ->  ( { c ,  ( P `  0 ) }  e.  E  <->  { ( P `  2 ) ,  ( P ` 
0 ) }  e.  E ) )
137134, 1363anbi23d 1402 . . . . . . . . . . . . . . . 16  |-  ( c  =  ( P ` 
2 )  ->  (
( { ( P `
 0 ) ,  ( P `  1
) }  e.  E  /\  { ( P ` 
1 ) ,  c }  e.  E  /\  { c ,  ( P `
 0 ) }  e.  E )  <->  ( {
( P `  0
) ,  ( P `
 1 ) }  e.  E  /\  {
( P `  1
) ,  ( P `
 2 ) }  e.  E  /\  {
( P `  2
) ,  ( P `
 0 ) }  e.  E ) ) )
138 neeq2 2857 . . . . . . . . . . . . . . . . 17  |-  ( c  =  ( P ` 
2 )  ->  (
( P `  1
)  =/=  c  <->  ( P `  1 )  =/=  ( P `  2
) ) )
139 neeq1 2856 . . . . . . . . . . . . . . . . 17  |-  ( c  =  ( P ` 
2 )  ->  (
c  =/=  ( P `
 0 )  <->  ( P `  2 )  =/=  ( P `  0
) ) )
140138, 1393anbi23d 1402 . . . . . . . . . . . . . . . 16  |-  ( c  =  ( P ` 
2 )  ->  (
( ( P ` 
0 )  =/=  ( P `  1 )  /\  ( P `  1
)  =/=  c  /\  c  =/=  ( P ` 
0 ) )  <->  ( ( P `  0 )  =/=  ( P `  1
)  /\  ( P `  1 )  =/=  ( P `  2
)  /\  ( P `  2 )  =/=  ( P `  0
) ) ) )
141137, 140anbi12d 747 . . . . . . . . . . . . . . 15  |-  ( c  =  ( P ` 
2 )  ->  (
( ( { ( P `  0 ) ,  ( P ` 
1 ) }  e.  E  /\  { ( P `
 1 ) ,  c }  e.  E  /\  { c ,  ( P `  0 ) }  e.  E )  /\  ( ( P `
 0 )  =/=  ( P `  1
)  /\  ( P `  1 )  =/=  c  /\  c  =/=  ( P `  0
) ) )  <->  ( ( { ( P ` 
0 ) ,  ( P `  1 ) }  e.  E  /\  { ( P `  1
) ,  ( P `
 2 ) }  e.  E  /\  {
( P `  2
) ,  ( P `
 0 ) }  e.  E )  /\  ( ( P ` 
0 )  =/=  ( P `  1 )  /\  ( P `  1
)  =/=  ( P `
 2 )  /\  ( P `  2 )  =/=  ( P ` 
0 ) ) ) ) )
142123, 132, 141rspc3ev 3326 . . . . . . . . . . . . . 14  |-  ( ( ( ( P ` 
0 )  e.  V  /\  ( P `  1
)  e.  V  /\  ( P `  2 )  e.  V )  /\  ( ( { ( P `  0 ) ,  ( P ` 
1 ) }  e.  E  /\  { ( P `
 1 ) ,  ( P `  2
) }  e.  E  /\  { ( P ` 
2 ) ,  ( P `  0 ) }  e.  E )  /\  ( ( P `
 0 )  =/=  ( P `  1
)  /\  ( P `  1 )  =/=  ( P `  2
)  /\  ( P `  2 )  =/=  ( P `  0
) ) ) )  ->  E. a  e.  V  E. b  e.  V  E. c  e.  V  ( ( { a ,  b }  e.  E  /\  { b ,  c }  e.  E  /\  { c ,  a }  e.  E )  /\  ( a  =/=  b  /\  b  =/=  c  /\  c  =/=  a ) ) )
14364, 71, 114, 142syl12anc 1324 . . . . . . . . . . . . 13  |-  ( ( ( # `  F
)  =  3  /\  ( ( F (Paths `  G ) P  /\  ( P `  0 )  =  ( P ` 
3 ) )  /\  ( { ( P ` 
0 ) ,  ( P `  1 ) }  e.  E  /\  { ( P `  1
) ,  ( P `
 2 ) }  e.  E  /\  {
( P `  2
) ,  ( P `
 3 ) }  e.  E ) ) )  ->  E. a  e.  V  E. b  e.  V  E. c  e.  V  ( ( { a ,  b }  e.  E  /\  { b ,  c }  e.  E  /\  {
c ,  a }  e.  E )  /\  ( a  =/=  b  /\  b  =/=  c  /\  c  =/=  a
) ) )
144143ex 450 . . . . . . . . . . . 12  |-  ( (
# `  F )  =  3  ->  (
( ( F (Paths `  G ) P  /\  ( P `  0 )  =  ( P ` 
3 ) )  /\  ( { ( P ` 
0 ) ,  ( P `  1 ) }  e.  E  /\  { ( P `  1
) ,  ( P `
 2 ) }  e.  E  /\  {
( P `  2
) ,  ( P `
 3 ) }  e.  E ) )  ->  E. a  e.  V  E. b  e.  V  E. c  e.  V  ( ( { a ,  b }  e.  E  /\  { b ,  c }  e.  E  /\  { c ,  a }  e.  E )  /\  ( a  =/=  b  /\  b  =/=  c  /\  c  =/=  a ) ) ) )
14538, 144sylbid 230 . . . . . . . . . . 11  |-  ( (
# `  F )  =  3  ->  (
( ( F (Paths `  G ) P  /\  ( P `  0 )  =  ( P `  ( # `  F ) ) )  /\  A. k  e.  ( 0..^ ( # `  F
) ) { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  e.  E )  ->  E. a  e.  V  E. b  e.  V  E. c  e.  V  ( ( { a ,  b }  e.  E  /\  { b ,  c }  e.  E  /\  {
c ,  a }  e.  E )  /\  ( a  =/=  b  /\  b  =/=  c  /\  c  =/=  a
) ) ) )
146145expd 452 . . . . . . . . . 10  |-  ( (
# `  F )  =  3  ->  (
( F (Paths `  G ) P  /\  ( P `  0 )  =  ( P `  ( # `  F ) ) )  ->  ( A. k  e.  (
0..^ ( # `  F
) ) { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  e.  E  ->  E. a  e.  V  E. b  e.  V  E. c  e.  V  ( ( { a ,  b }  e.  E  /\  { b ,  c }  e.  E  /\  { c ,  a }  e.  E )  /\  ( a  =/=  b  /\  b  =/=  c  /\  c  =/=  a ) ) ) ) )
147146com13 88 . . . . . . . . 9  |-  ( A. k  e.  ( 0..^ ( # `  F
) ) { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  e.  E  ->  ( ( F (Paths `  G ) P  /\  ( P ` 
0 )  =  ( P `  ( # `  F ) ) )  ->  ( ( # `  F )  =  3  ->  E. a  e.  V  E. b  e.  V  E. c  e.  V  ( ( { a ,  b }  e.  E  /\  { b ,  c }  e.  E  /\  { c ,  a }  e.  E )  /\  ( a  =/=  b  /\  b  =/=  c  /\  c  =/=  a ) ) ) ) )
1484, 147syl 17 . . . . . . . 8  |-  ( ( G  e. UPGraph  /\  F (Walks `  G ) P )  ->  ( ( F (Paths `  G ) P  /\  ( P ` 
0 )  =  ( P `  ( # `  F ) ) )  ->  ( ( # `  F )  =  3  ->  E. a  e.  V  E. b  e.  V  E. c  e.  V  ( ( { a ,  b }  e.  E  /\  { b ,  c }  e.  E  /\  { c ,  a }  e.  E )  /\  ( a  =/=  b  /\  b  =/=  c  /\  c  =/=  a ) ) ) ) )
149148expcom 451 . . . . . . 7  |-  ( F (Walks `  G ) P  ->  ( G  e. UPGraph  ->  ( ( F (Paths `  G ) P  /\  ( P `  0 )  =  ( P `  ( # `  F ) ) )  ->  (
( # `  F )  =  3  ->  E. a  e.  V  E. b  e.  V  E. c  e.  V  ( ( { a ,  b }  e.  E  /\  { b ,  c }  e.  E  /\  {
c ,  a }  e.  E )  /\  ( a  =/=  b  /\  b  =/=  c  /\  c  =/=  a
) ) ) ) ) )
150149com23 86 . . . . . 6  |-  ( F (Walks `  G ) P  ->  ( ( F (Paths `  G ) P  /\  ( P ` 
0 )  =  ( P `  ( # `  F ) ) )  ->  ( G  e. UPGraph  ->  ( ( # `  F
)  =  3  ->  E. a  e.  V  E. b  e.  V  E. c  e.  V  ( ( { a ,  b }  e.  E  /\  { b ,  c }  e.  E  /\  { c ,  a }  e.  E )  /\  ( a  =/=  b  /\  b  =/=  c  /\  c  =/=  a ) ) ) ) ) )
151150expd 452 . . . . 5  |-  ( F (Walks `  G ) P  ->  ( F (Paths `  G ) P  -> 
( ( P ` 
0 )  =  ( P `  ( # `  F ) )  -> 
( G  e. UPGraph  ->  ( ( # `  F
)  =  3  ->  E. a  e.  V  E. b  e.  V  E. c  e.  V  ( ( { a ,  b }  e.  E  /\  { b ,  c }  e.  E  /\  { c ,  a }  e.  E )  /\  ( a  =/=  b  /\  b  =/=  c  /\  c  =/=  a ) ) ) ) ) ) )
1522, 151mpcom 38 . . . 4  |-  ( F (Paths `  G ) P  ->  ( ( P `
 0 )  =  ( P `  ( # `
 F ) )  ->  ( G  e. UPGraph  ->  ( ( # `  F
)  =  3  ->  E. a  e.  V  E. b  e.  V  E. c  e.  V  ( ( { a ,  b }  e.  E  /\  { b ,  c }  e.  E  /\  { c ,  a }  e.  E )  /\  ( a  =/=  b  /\  b  =/=  c  /\  c  =/=  a ) ) ) ) ) )
153152imp 445 . . 3  |-  ( ( F (Paths `  G
) P  /\  ( P `  0 )  =  ( P `  ( # `  F ) ) )  ->  ( G  e. UPGraph  ->  ( (
# `  F )  =  3  ->  E. a  e.  V  E. b  e.  V  E. c  e.  V  ( ( { a ,  b }  e.  E  /\  { b ,  c }  e.  E  /\  {
c ,  a }  e.  E )  /\  ( a  =/=  b  /\  b  =/=  c  /\  c  =/=  a
) ) ) ) )
1541, 153syl 17 . 2  |-  ( F (Cycles `  G ) P  ->  ( G  e. UPGraph  ->  ( ( # `  F
)  =  3  ->  E. a  e.  V  E. b  e.  V  E. c  e.  V  ( ( { a ,  b }  e.  E  /\  { b ,  c }  e.  E  /\  { c ,  a }  e.  E )  /\  ( a  =/=  b  /\  b  =/=  c  /\  c  =/=  a ) ) ) ) )
1551543imp21 1277 1  |-  ( ( G  e. UPGraph  /\  F (Cycles `  G ) P  /\  ( # `  F )  =  3 )  ->  E. a  e.  V  E. b  e.  V  E. c  e.  V  ( ( { a ,  b }  e.  E  /\  { b ,  c }  e.  E  /\  { c ,  a }  e.  E )  /\  ( a  =/=  b  /\  b  =/=  c  /\  c  =/=  a ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {cpr 4179   {ctp 4181   class class class wbr 4653   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074   NNcn 11020   2c2 11070   3c3 11071   NN0cn0 11292   ...cfz 12326  ..^cfzo 12465   #chash 13117  Vtxcvtx 25874  Edgcedg 25939   UPGraph cupgr 25975  Walkscwlks 26492  Pathscpths 26608  Cyclesccycls 26680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-wlks 26495  df-trls 26589  df-pths 26612  df-cycls 26682
This theorem is referenced by:  umgr3v3e3cycl  27044
  Copyright terms: Public domain W3C validator