MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2expltfac Structured version   Visualization version   Unicode version

Theorem 2expltfac 15799
Description: The factorial grows faster than two to the power  N. (Contributed by Mario Carneiro, 15-Sep-2016.)
Assertion
Ref Expression
2expltfac  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2 ^ N )  < 
( ! `  N
) )

Proof of Theorem 2expltfac
Dummy variables  x  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . 4  |-  ( x  =  4  ->  (
2 ^ x )  =  ( 2 ^ 4 ) )
2 2exp4 15794 . . . 4  |-  ( 2 ^ 4 )  = ; 1
6
31, 2syl6eq 2672 . . 3  |-  ( x  =  4  ->  (
2 ^ x )  = ; 1 6 )
4 fveq2 6191 . . . 4  |-  ( x  =  4  ->  ( ! `  x )  =  ( ! ` 
4 ) )
5 fac4 13068 . . . 4  |-  ( ! `
 4 )  = ; 2
4
64, 5syl6eq 2672 . . 3  |-  ( x  =  4  ->  ( ! `  x )  = ; 2 4 )
73, 6breq12d 4666 . 2  |-  ( x  =  4  ->  (
( 2 ^ x
)  <  ( ! `  x )  <-> ; 1 6  < ; 2 4 ) )
8 oveq2 6658 . . 3  |-  ( x  =  n  ->  (
2 ^ x )  =  ( 2 ^ n ) )
9 fveq2 6191 . . 3  |-  ( x  =  n  ->  ( ! `  x )  =  ( ! `  n ) )
108, 9breq12d 4666 . 2  |-  ( x  =  n  ->  (
( 2 ^ x
)  <  ( ! `  x )  <->  ( 2 ^ n )  < 
( ! `  n
) ) )
11 oveq2 6658 . . 3  |-  ( x  =  ( n  + 
1 )  ->  (
2 ^ x )  =  ( 2 ^ ( n  +  1 ) ) )
12 fveq2 6191 . . 3  |-  ( x  =  ( n  + 
1 )  ->  ( ! `  x )  =  ( ! `  ( n  +  1
) ) )
1311, 12breq12d 4666 . 2  |-  ( x  =  ( n  + 
1 )  ->  (
( 2 ^ x
)  <  ( ! `  x )  <->  ( 2 ^ ( n  + 
1 ) )  < 
( ! `  (
n  +  1 ) ) ) )
14 oveq2 6658 . . 3  |-  ( x  =  N  ->  (
2 ^ x )  =  ( 2 ^ N ) )
15 fveq2 6191 . . 3  |-  ( x  =  N  ->  ( ! `  x )  =  ( ! `  N ) )
1614, 15breq12d 4666 . 2  |-  ( x  =  N  ->  (
( 2 ^ x
)  <  ( ! `  x )  <->  ( 2 ^ N )  < 
( ! `  N
) ) )
17 1nn0 11308 . . . 4  |-  1  e.  NN0
18 2nn0 11309 . . . 4  |-  2  e.  NN0
19 6nn0 11313 . . . 4  |-  6  e.  NN0
20 4nn0 11311 . . . 4  |-  4  e.  NN0
21 6lt10 11676 . . . 4  |-  6  < ; 1
0
22 1lt2 11194 . . . 4  |-  1  <  2
2317, 18, 19, 20, 21, 22decltc 11532 . . 3  |- ; 1 6  < ; 2 4
2423a1i 11 . 2  |-  ( 4  e.  ZZ  -> ; 1 6  < ; 2 4 )
25 2nn 11185 . . . . . . . . 9  |-  2  e.  NN
2625a1i 11 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
2  e.  NN )
27 4nn 11187 . . . . . . . . . 10  |-  4  e.  NN
28 simpl 473 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  ->  n  e.  ( ZZ>= ` 
4 ) )
29 eluznn 11758 . . . . . . . . . 10  |-  ( ( 4  e.  NN  /\  n  e.  ( ZZ>= ` 
4 ) )  ->  n  e.  NN )
3027, 28, 29sylancr 695 . . . . . . . . 9  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  ->  n  e.  NN )
3130nnnn0d 11351 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  ->  n  e.  NN0 )
3226, 31nnexpcld 13030 . . . . . . 7  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( 2 ^ n
)  e.  NN )
3332nnred 11035 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( 2 ^ n
)  e.  RR )
34 2re 11090 . . . . . . 7  |-  2  e.  RR
3534a1i 11 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
2  e.  RR )
3633, 35remulcld 10070 . . . . 5  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ( 2 ^ n )  x.  2 )  e.  RR )
3731faccld 13071 . . . . . . 7  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ! `  n
)  e.  NN )
3837nnred 11035 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ! `  n
)  e.  RR )
3938, 35remulcld 10070 . . . . 5  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ( ! `  n )  x.  2 )  e.  RR )
4030nnred 11035 . . . . . . 7  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  ->  n  e.  RR )
41 1red 10055 . . . . . . 7  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
1  e.  RR )
4240, 41readdcld 10069 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( n  +  1 )  e.  RR )
4338, 42remulcld 10070 . . . . 5  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ( ! `  n )  x.  (
n  +  1 ) )  e.  RR )
44 2rp 11837 . . . . . . 7  |-  2  e.  RR+
4544a1i 11 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
2  e.  RR+ )
46 simpr 477 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( 2 ^ n
)  <  ( ! `  n ) )
4733, 38, 45, 46ltmul1dd 11927 . . . . 5  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ( 2 ^ n )  x.  2 )  <  ( ( ! `  n )  x.  2 ) )
4837nnnn0d 11351 . . . . . . 7  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ! `  n
)  e.  NN0 )
4948nn0ge0d 11354 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
0  <_  ( ! `  n ) )
50 df-2 11079 . . . . . . 7  |-  2  =  ( 1  +  1 )
5130nnge1d 11063 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
1  <_  n )
5241, 40, 41, 51leadd1dd 10641 . . . . . . 7  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( 1  +  1 )  <_  ( n  +  1 ) )
5350, 52syl5eqbr 4688 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
2  <_  ( n  +  1 ) )
5435, 42, 38, 49, 53lemul2ad 10964 . . . . 5  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ( ! `  n )  x.  2 )  <_  ( ( ! `  n )  x.  ( n  +  1 ) ) )
5536, 39, 43, 47, 54ltletrd 10197 . . . 4  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ( 2 ^ n )  x.  2 )  <  ( ( ! `  n )  x.  ( n  + 
1 ) ) )
56 2cnd 11093 . . . . 5  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
2  e.  CC )
5756, 31expp1d 13009 . . . 4  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( 2 ^ (
n  +  1 ) )  =  ( ( 2 ^ n )  x.  2 ) )
58 facp1 13065 . . . . 5  |-  ( n  e.  NN0  ->  ( ! `
 ( n  + 
1 ) )  =  ( ( ! `  n )  x.  (
n  +  1 ) ) )
5931, 58syl 17 . . . 4  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ! `  (
n  +  1 ) )  =  ( ( ! `  n )  x.  ( n  + 
1 ) ) )
6055, 57, 593brtr4d 4685 . . 3  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( 2 ^ (
n  +  1 ) )  <  ( ! `
 ( n  + 
1 ) ) )
6160ex 450 . 2  |-  ( n  e.  ( ZZ>= `  4
)  ->  ( (
2 ^ n )  <  ( ! `  n )  ->  (
2 ^ ( n  +  1 ) )  <  ( ! `  ( n  +  1
) ) ) )
627, 10, 13, 16, 24, 61uzind4 11746 1  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2 ^ N )  < 
( ! `  N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075   NNcn 11020   2c2 11070   4c4 11072   6c6 11074   NN0cn0 11292   ZZcz 11377  ;cdc 11493   ZZ>=cuz 11687   RR+crp 11832   ^cexp 12860   !cfa 13060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-fac 13061
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator