MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwsidrepsw Structured version   Visualization version   Unicode version

Theorem cshwsidrepsw 15800
Description: If cyclically shifting a word of length being a prime number by a number of positions which is not divisible by the prime number results in the word itself, the word is a "repeated symbol word". (Contributed by AV, 18-May-2018.) (Revised by AV, 10-Nov-2018.)
Assertion
Ref Expression
cshwsidrepsw  |-  ( ( W  e. Word  V  /\  ( # `  W )  e.  Prime )  ->  (
( L  e.  ZZ  /\  ( L  mod  ( # `
 W ) )  =/=  0  /\  ( W cyclShift  L )  =  W )  ->  W  =  ( ( W ` 
0 ) repeatS  ( # `  W
) ) ) )

Proof of Theorem cshwsidrepsw
Dummy variables  i 
j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . . . . 9  |-  ( ( W  e. Word  V  /\  ( # `  W )  e.  Prime )  ->  ( # `
 W )  e. 
Prime )
21adantr 481 . . . . . . . 8  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  e.  Prime )  /\  ( L  e.  ZZ  /\  ( L  mod  ( # `
 W ) )  =/=  0  /\  ( W cyclShift  L )  =  W ) )  ->  ( # `
 W )  e. 
Prime )
3 simp1 1061 . . . . . . . . 9  |-  ( ( L  e.  ZZ  /\  ( L  mod  ( # `  W ) )  =/=  0  /\  ( W cyclShift  L )  =  W )  ->  L  e.  ZZ )
43adantl 482 . . . . . . . 8  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  e.  Prime )  /\  ( L  e.  ZZ  /\  ( L  mod  ( # `
 W ) )  =/=  0  /\  ( W cyclShift  L )  =  W ) )  ->  L  e.  ZZ )
5 simpr2 1068 . . . . . . . 8  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  e.  Prime )  /\  ( L  e.  ZZ  /\  ( L  mod  ( # `
 W ) )  =/=  0  /\  ( W cyclShift  L )  =  W ) )  ->  ( L  mod  ( # `  W
) )  =/=  0
)
62, 4, 53jca 1242 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  e.  Prime )  /\  ( L  e.  ZZ  /\  ( L  mod  ( # `
 W ) )  =/=  0  /\  ( W cyclShift  L )  =  W ) )  ->  (
( # `  W )  e.  Prime  /\  L  e.  ZZ  /\  ( L  mod  ( # `  W
) )  =/=  0
) )
76adantr 481 . . . . . 6  |-  ( ( ( ( W  e. Word  V  /\  ( # `  W
)  e.  Prime )  /\  ( L  e.  ZZ  /\  ( L  mod  ( # `
 W ) )  =/=  0  /\  ( W cyclShift  L )  =  W ) )  /\  i  e.  ( 0..^ ( # `  W ) ) )  ->  ( ( # `  W )  e.  Prime  /\  L  e.  ZZ  /\  ( L  mod  ( # `  W ) )  =/=  0 ) )
8 simpr 477 . . . . . 6  |-  ( ( ( ( W  e. Word  V  /\  ( # `  W
)  e.  Prime )  /\  ( L  e.  ZZ  /\  ( L  mod  ( # `
 W ) )  =/=  0  /\  ( W cyclShift  L )  =  W ) )  /\  i  e.  ( 0..^ ( # `  W ) ) )  ->  i  e.  ( 0..^ ( # `  W
) ) )
9 modprmn0modprm0 15512 . . . . . 6  |-  ( ( ( # `  W
)  e.  Prime  /\  L  e.  ZZ  /\  ( L  mod  ( # `  W
) )  =/=  0
)  ->  ( i  e.  ( 0..^ ( # `  W ) )  ->  E. j  e.  (
0..^ ( # `  W
) ) ( ( i  +  ( j  x.  L ) )  mod  ( # `  W
) )  =  0 ) )
107, 8, 9sylc 65 . . . . 5  |-  ( ( ( ( W  e. Word  V  /\  ( # `  W
)  e.  Prime )  /\  ( L  e.  ZZ  /\  ( L  mod  ( # `
 W ) )  =/=  0  /\  ( W cyclShift  L )  =  W ) )  /\  i  e.  ( 0..^ ( # `  W ) ) )  ->  E. j  e.  ( 0..^ ( # `  W
) ) ( ( i  +  ( j  x.  L ) )  mod  ( # `  W
) )  =  0 )
11 elfzonn0 12512 . . . . . . . . . 10  |-  ( j  e.  ( 0..^ (
# `  W )
)  ->  j  e.  NN0 )
1211ad2antrr 762 . . . . . . . . 9  |-  ( ( ( j  e.  ( 0..^ ( # `  W
) )  /\  (
( i  +  ( j  x.  L ) )  mod  ( # `  W ) )  =  0 )  /\  (
( ( W  e. Word  V  /\  ( # `  W
)  e.  Prime )  /\  ( L  e.  ZZ  /\  ( L  mod  ( # `
 W ) )  =/=  0  /\  ( W cyclShift  L )  =  W ) )  /\  i  e.  ( 0..^ ( # `  W ) ) ) )  ->  j  e.  NN0 )
13 simpl 473 . . . . . . . . . . . . 13  |-  ( ( W  e. Word  V  /\  ( # `  W )  e.  Prime )  ->  W  e. Word  V )
1413, 3anim12i 590 . . . . . . . . . . . 12  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  e.  Prime )  /\  ( L  e.  ZZ  /\  ( L  mod  ( # `
 W ) )  =/=  0  /\  ( W cyclShift  L )  =  W ) )  ->  ( W  e. Word  V  /\  L  e.  ZZ ) )
1514adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( W  e. Word  V  /\  ( # `  W
)  e.  Prime )  /\  ( L  e.  ZZ  /\  ( L  mod  ( # `
 W ) )  =/=  0  /\  ( W cyclShift  L )  =  W ) )  /\  i  e.  ( 0..^ ( # `  W ) ) )  ->  ( W  e. Word  V  /\  L  e.  ZZ ) )
1615adantl 482 . . . . . . . . . 10  |-  ( ( ( j  e.  ( 0..^ ( # `  W
) )  /\  (
( i  +  ( j  x.  L ) )  mod  ( # `  W ) )  =  0 )  /\  (
( ( W  e. Word  V  /\  ( # `  W
)  e.  Prime )  /\  ( L  e.  ZZ  /\  ( L  mod  ( # `
 W ) )  =/=  0  /\  ( W cyclShift  L )  =  W ) )  /\  i  e.  ( 0..^ ( # `  W ) ) ) )  ->  ( W  e. Word  V  /\  L  e.  ZZ ) )
17 simpr3 1069 . . . . . . . . . . . 12  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  e.  Prime )  /\  ( L  e.  ZZ  /\  ( L  mod  ( # `
 W ) )  =/=  0  /\  ( W cyclShift  L )  =  W ) )  ->  ( W cyclShift  L )  =  W )
1817anim1i 592 . . . . . . . . . . 11  |-  ( ( ( ( W  e. Word  V  /\  ( # `  W
)  e.  Prime )  /\  ( L  e.  ZZ  /\  ( L  mod  ( # `
 W ) )  =/=  0  /\  ( W cyclShift  L )  =  W ) )  /\  i  e.  ( 0..^ ( # `  W ) ) )  ->  ( ( W cyclShift  L )  =  W  /\  i  e.  ( 0..^ ( # `  W
) ) ) )
1918adantl 482 . . . . . . . . . 10  |-  ( ( ( j  e.  ( 0..^ ( # `  W
) )  /\  (
( i  +  ( j  x.  L ) )  mod  ( # `  W ) )  =  0 )  /\  (
( ( W  e. Word  V  /\  ( # `  W
)  e.  Prime )  /\  ( L  e.  ZZ  /\  ( L  mod  ( # `
 W ) )  =/=  0  /\  ( W cyclShift  L )  =  W ) )  /\  i  e.  ( 0..^ ( # `  W ) ) ) )  ->  ( ( W cyclShift  L )  =  W  /\  i  e.  ( 0..^ ( # `  W
) ) ) )
20 cshweqrep 13567 . . . . . . . . . 10  |-  ( ( W  e. Word  V  /\  L  e.  ZZ )  ->  ( ( ( W cyclShift  L )  =  W  /\  i  e.  ( 0..^ ( # `  W
) ) )  ->  A. k  e.  NN0  ( W `  i )  =  ( W `  ( ( i  +  ( k  x.  L
) )  mod  ( # `
 W ) ) ) ) )
2116, 19, 20sylc 65 . . . . . . . . 9  |-  ( ( ( j  e.  ( 0..^ ( # `  W
) )  /\  (
( i  +  ( j  x.  L ) )  mod  ( # `  W ) )  =  0 )  /\  (
( ( W  e. Word  V  /\  ( # `  W
)  e.  Prime )  /\  ( L  e.  ZZ  /\  ( L  mod  ( # `
 W ) )  =/=  0  /\  ( W cyclShift  L )  =  W ) )  /\  i  e.  ( 0..^ ( # `  W ) ) ) )  ->  A. k  e.  NN0  ( W `  i )  =  ( W `  ( ( i  +  ( k  x.  L ) )  mod  ( # `  W
) ) ) )
22 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( k  =  j  ->  (
k  x.  L )  =  ( j  x.  L ) )
2322oveq2d 6666 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
i  +  ( k  x.  L ) )  =  ( i  +  ( j  x.  L
) ) )
2423oveq1d 6665 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
( i  +  ( k  x.  L ) )  mod  ( # `  W ) )  =  ( ( i  +  ( j  x.  L
) )  mod  ( # `
 W ) ) )
2524fveq2d 6195 . . . . . . . . . . 11  |-  ( k  =  j  ->  ( W `  ( (
i  +  ( k  x.  L ) )  mod  ( # `  W
) ) )  =  ( W `  (
( i  +  ( j  x.  L ) )  mod  ( # `  W ) ) ) )
2625eqeq2d 2632 . . . . . . . . . 10  |-  ( k  =  j  ->  (
( W `  i
)  =  ( W `
 ( ( i  +  ( k  x.  L ) )  mod  ( # `  W
) ) )  <->  ( W `  i )  =  ( W `  ( ( i  +  ( j  x.  L ) )  mod  ( # `  W
) ) ) ) )
2726rspcva 3307 . . . . . . . . 9  |-  ( ( j  e.  NN0  /\  A. k  e.  NN0  ( W `  i )  =  ( W `  ( ( i  +  ( k  x.  L
) )  mod  ( # `
 W ) ) ) )  ->  ( W `  i )  =  ( W `  ( ( i  +  ( j  x.  L
) )  mod  ( # `
 W ) ) ) )
2812, 21, 27syl2anc 693 . . . . . . . 8  |-  ( ( ( j  e.  ( 0..^ ( # `  W
) )  /\  (
( i  +  ( j  x.  L ) )  mod  ( # `  W ) )  =  0 )  /\  (
( ( W  e. Word  V  /\  ( # `  W
)  e.  Prime )  /\  ( L  e.  ZZ  /\  ( L  mod  ( # `
 W ) )  =/=  0  /\  ( W cyclShift  L )  =  W ) )  /\  i  e.  ( 0..^ ( # `  W ) ) ) )  ->  ( W `  i )  =  ( W `  ( ( i  +  ( j  x.  L ) )  mod  ( # `  W
) ) ) )
29 fveq2 6191 . . . . . . . . . 10  |-  ( ( ( i  +  ( j  x.  L ) )  mod  ( # `  W ) )  =  0  ->  ( W `  ( ( i  +  ( j  x.  L
) )  mod  ( # `
 W ) ) )  =  ( W `
 0 ) )
3029adantl 482 . . . . . . . . 9  |-  ( ( j  e.  ( 0..^ ( # `  W
) )  /\  (
( i  +  ( j  x.  L ) )  mod  ( # `  W ) )  =  0 )  ->  ( W `  ( (
i  +  ( j  x.  L ) )  mod  ( # `  W
) ) )  =  ( W `  0
) )
3130adantr 481 . . . . . . . 8  |-  ( ( ( j  e.  ( 0..^ ( # `  W
) )  /\  (
( i  +  ( j  x.  L ) )  mod  ( # `  W ) )  =  0 )  /\  (
( ( W  e. Word  V  /\  ( # `  W
)  e.  Prime )  /\  ( L  e.  ZZ  /\  ( L  mod  ( # `
 W ) )  =/=  0  /\  ( W cyclShift  L )  =  W ) )  /\  i  e.  ( 0..^ ( # `  W ) ) ) )  ->  ( W `  ( ( i  +  ( j  x.  L
) )  mod  ( # `
 W ) ) )  =  ( W `
 0 ) )
3228, 31eqtrd 2656 . . . . . . 7  |-  ( ( ( j  e.  ( 0..^ ( # `  W
) )  /\  (
( i  +  ( j  x.  L ) )  mod  ( # `  W ) )  =  0 )  /\  (
( ( W  e. Word  V  /\  ( # `  W
)  e.  Prime )  /\  ( L  e.  ZZ  /\  ( L  mod  ( # `
 W ) )  =/=  0  /\  ( W cyclShift  L )  =  W ) )  /\  i  e.  ( 0..^ ( # `  W ) ) ) )  ->  ( W `  i )  =  ( W `  0 ) )
3332ex 450 . . . . . 6  |-  ( ( j  e.  ( 0..^ ( # `  W
) )  /\  (
( i  +  ( j  x.  L ) )  mod  ( # `  W ) )  =  0 )  ->  (
( ( ( W  e. Word  V  /\  ( # `
 W )  e. 
Prime )  /\  ( L  e.  ZZ  /\  ( L  mod  ( # `  W
) )  =/=  0  /\  ( W cyclShift  L )  =  W ) )  /\  i  e.  ( 0..^ ( # `  W
) ) )  -> 
( W `  i
)  =  ( W `
 0 ) ) )
3433rexlimiva 3028 . . . . 5  |-  ( E. j  e.  ( 0..^ ( # `  W
) ) ( ( i  +  ( j  x.  L ) )  mod  ( # `  W
) )  =  0  ->  ( ( ( ( W  e. Word  V  /\  ( # `  W
)  e.  Prime )  /\  ( L  e.  ZZ  /\  ( L  mod  ( # `
 W ) )  =/=  0  /\  ( W cyclShift  L )  =  W ) )  /\  i  e.  ( 0..^ ( # `  W ) ) )  ->  ( W `  i )  =  ( W `  0 ) ) )
3510, 34mpcom 38 . . . 4  |-  ( ( ( ( W  e. Word  V  /\  ( # `  W
)  e.  Prime )  /\  ( L  e.  ZZ  /\  ( L  mod  ( # `
 W ) )  =/=  0  /\  ( W cyclShift  L )  =  W ) )  /\  i  e.  ( 0..^ ( # `  W ) ) )  ->  ( W `  i )  =  ( W `  0 ) )
3635ralrimiva 2966 . . 3  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  e.  Prime )  /\  ( L  e.  ZZ  /\  ( L  mod  ( # `
 W ) )  =/=  0  /\  ( W cyclShift  L )  =  W ) )  ->  A. i  e.  ( 0..^ ( # `  W ) ) ( W `  i )  =  ( W ` 
0 ) )
37 repswsymballbi 13527 . . . 4  |-  ( W  e. Word  V  ->  ( W  =  ( ( W `  0 ) repeatS  (
# `  W )
)  <->  A. i  e.  ( 0..^ ( # `  W
) ) ( W `
 i )  =  ( W `  0
) ) )
3837ad2antrr 762 . . 3  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  e.  Prime )  /\  ( L  e.  ZZ  /\  ( L  mod  ( # `
 W ) )  =/=  0  /\  ( W cyclShift  L )  =  W ) )  ->  ( W  =  ( ( W `  0 ) repeatS  (
# `  W )
)  <->  A. i  e.  ( 0..^ ( # `  W
) ) ( W `
 i )  =  ( W `  0
) ) )
3936, 38mpbird 247 . 2  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  e.  Prime )  /\  ( L  e.  ZZ  /\  ( L  mod  ( # `
 W ) )  =/=  0  /\  ( W cyclShift  L )  =  W ) )  ->  W  =  ( ( W `
 0 ) repeatS  ( # `
 W ) ) )
4039ex 450 1  |-  ( ( W  e. Word  V  /\  ( # `  W )  e.  Prime )  ->  (
( L  e.  ZZ  /\  ( L  mod  ( # `
 W ) )  =/=  0  /\  ( W cyclShift  L )  =  W )  ->  W  =  ( ( W ` 
0 ) repeatS  ( # `  W
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   ` cfv 5888  (class class class)co 6650   0cc0 9936    + caddc 9939    x. cmul 9941   NN0cn0 11292   ZZcz 11377  ..^cfzo 12465    mod cmo 12668   #chash 13117  Word cword 13291   repeatS creps 13298   cyclShift ccsh 13534   Primecprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-reps 13306  df-csh 13535  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471
This theorem is referenced by:  cshwsidrepswmod0  15801
  Copyright terms: Public domain W3C validator