Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2nn0ind Structured version   Visualization version   Unicode version

Theorem 2nn0ind 37510
Description: Induction on nonnegative integers with two base cases, for use with Lucas-type sequences. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Hypotheses
Ref Expression
2nn0ind.1  |-  ps
2nn0ind.2  |-  ch
2nn0ind.3  |-  ( y  e.  NN  ->  (
( th  /\  ta )  ->  et ) )
2nn0ind.4  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
2nn0ind.5  |-  ( x  =  1  ->  ( ph 
<->  ch ) )
2nn0ind.6  |-  ( x  =  ( y  - 
1 )  ->  ( ph 
<->  th ) )
2nn0ind.7  |-  ( x  =  y  ->  ( ph 
<->  ta ) )
2nn0ind.8  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  et ) )
2nn0ind.9  |-  ( x  =  A  ->  ( ph 
<->  rh ) )
Assertion
Ref Expression
2nn0ind  |-  ( A  e.  NN0  ->  rh )
Distinct variable groups:    x, y    x, A    ps, x    ch, x    th, x    ta, x    et, x    rh, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    et( y)    rh( y)    A( y)

Proof of Theorem 2nn0ind
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 nn0p1nn 11332 . . . 4  |-  ( A  e.  NN0  ->  ( A  +  1 )  e.  NN )
2 oveq1 6657 . . . . . . 7  |-  ( a  =  1  ->  (
a  -  1 )  =  ( 1  -  1 ) )
32sbceq1d 3440 . . . . . 6  |-  ( a  =  1  ->  ( [. ( a  -  1 )  /  x ]. ph  <->  [. ( 1  -  1 )  /  x ]. ph ) )
4 dfsbcq 3437 . . . . . 6  |-  ( a  =  1  ->  ( [. a  /  x ]. ph  <->  [. 1  /  x ]. ph ) )
53, 4anbi12d 747 . . . . 5  |-  ( a  =  1  ->  (
( [. ( a  - 
1 )  /  x ]. ph  /\  [. a  /  x ]. ph )  <->  (
[. ( 1  -  1 )  /  x ]. ph  /\  [. 1  /  x ]. ph )
) )
6 oveq1 6657 . . . . . . 7  |-  ( a  =  y  ->  (
a  -  1 )  =  ( y  - 
1 ) )
76sbceq1d 3440 . . . . . 6  |-  ( a  =  y  ->  ( [. ( a  -  1 )  /  x ]. ph  <->  [. ( y  -  1 )  /  x ]. ph ) )
8 dfsbcq 3437 . . . . . 6  |-  ( a  =  y  ->  ( [. a  /  x ]. ph  <->  [. y  /  x ]. ph ) )
97, 8anbi12d 747 . . . . 5  |-  ( a  =  y  ->  (
( [. ( a  - 
1 )  /  x ]. ph  /\  [. a  /  x ]. ph )  <->  (
[. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )
) )
10 oveq1 6657 . . . . . . 7  |-  ( a  =  ( y  +  1 )  ->  (
a  -  1 )  =  ( ( y  +  1 )  - 
1 ) )
1110sbceq1d 3440 . . . . . 6  |-  ( a  =  ( y  +  1 )  ->  ( [. ( a  -  1 )  /  x ]. ph  <->  [. ( ( y  +  1 )  -  1 )  /  x ]. ph ) )
12 dfsbcq 3437 . . . . . 6  |-  ( a  =  ( y  +  1 )  ->  ( [. a  /  x ]. ph  <->  [. ( y  +  1 )  /  x ]. ph ) )
1311, 12anbi12d 747 . . . . 5  |-  ( a  =  ( y  +  1 )  ->  (
( [. ( a  - 
1 )  /  x ]. ph  /\  [. a  /  x ]. ph )  <->  (
[. ( ( y  +  1 )  - 
1 )  /  x ]. ph  /\  [. (
y  +  1 )  /  x ]. ph )
) )
14 oveq1 6657 . . . . . . 7  |-  ( a  =  ( A  + 
1 )  ->  (
a  -  1 )  =  ( ( A  +  1 )  - 
1 ) )
1514sbceq1d 3440 . . . . . 6  |-  ( a  =  ( A  + 
1 )  ->  ( [. ( a  -  1 )  /  x ]. ph  <->  [. ( ( A  + 
1 )  -  1 )  /  x ]. ph ) )
16 dfsbcq 3437 . . . . . 6  |-  ( a  =  ( A  + 
1 )  ->  ( [. a  /  x ]. ph  <->  [. ( A  + 
1 )  /  x ]. ph ) )
1715, 16anbi12d 747 . . . . 5  |-  ( a  =  ( A  + 
1 )  ->  (
( [. ( a  - 
1 )  /  x ]. ph  /\  [. a  /  x ]. ph )  <->  (
[. ( ( A  +  1 )  - 
1 )  /  x ]. ph  /\  [. ( A  +  1 )  /  x ]. ph )
) )
18 2nn0ind.1 . . . . . . 7  |-  ps
19 ovex 6678 . . . . . . . 8  |-  ( 1  -  1 )  e. 
_V
20 1m1e0 11089 . . . . . . . . . 10  |-  ( 1  -  1 )  =  0
2120eqeq2i 2634 . . . . . . . . 9  |-  ( x  =  ( 1  -  1 )  <->  x  = 
0 )
22 2nn0ind.4 . . . . . . . . 9  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
2321, 22sylbi 207 . . . . . . . 8  |-  ( x  =  ( 1  -  1 )  ->  ( ph 
<->  ps ) )
2419, 23sbcie 3470 . . . . . . 7  |-  ( [. ( 1  -  1 )  /  x ]. ph  <->  ps )
2518, 24mpbir 221 . . . . . 6  |-  [. (
1  -  1 )  /  x ]. ph
26 2nn0ind.2 . . . . . . 7  |-  ch
27 1ex 10035 . . . . . . . 8  |-  1  e.  _V
28 2nn0ind.5 . . . . . . . 8  |-  ( x  =  1  ->  ( ph 
<->  ch ) )
2927, 28sbcie 3470 . . . . . . 7  |-  ( [.
1  /  x ]. ph  <->  ch )
3026, 29mpbir 221 . . . . . 6  |-  [. 1  /  x ]. ph
3125, 30pm3.2i 471 . . . . 5  |-  ( [. ( 1  -  1 )  /  x ]. ph 
/\  [. 1  /  x ]. ph )
32 simprr 796 . . . . . . . 8  |-  ( ( y  e.  NN  /\  ( [. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )
)  ->  [. y  /  x ]. ph )
33 nncn 11028 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  y  e.  CC )
34 ax-1cn 9994 . . . . . . . . . . 11  |-  1  e.  CC
35 pncan 10287 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  1  e.  CC )  ->  ( ( y  +  1 )  -  1 )  =  y )
3633, 34, 35sylancl 694 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
( y  +  1 )  -  1 )  =  y )
3736adantr 481 . . . . . . . . 9  |-  ( ( y  e.  NN  /\  ( [. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )
)  ->  ( (
y  +  1 )  -  1 )  =  y )
3837sbceq1d 3440 . . . . . . . 8  |-  ( ( y  e.  NN  /\  ( [. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )
)  ->  ( [. ( ( y  +  1 )  -  1 )  /  x ]. ph  <->  [. y  /  x ]. ph ) )
3932, 38mpbird 247 . . . . . . 7  |-  ( ( y  e.  NN  /\  ( [. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )
)  ->  [. ( ( y  +  1 )  -  1 )  /  x ]. ph )
40 2nn0ind.3 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
( th  /\  ta )  ->  et ) )
41 ovex 6678 . . . . . . . . . . 11  |-  ( y  -  1 )  e. 
_V
42 2nn0ind.6 . . . . . . . . . . 11  |-  ( x  =  ( y  - 
1 )  ->  ( ph 
<->  th ) )
4341, 42sbcie 3470 . . . . . . . . . 10  |-  ( [. ( y  -  1 )  /  x ]. ph  <->  th )
44 vex 3203 . . . . . . . . . . 11  |-  y  e. 
_V
45 2nn0ind.7 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( ph 
<->  ta ) )
4644, 45sbcie 3470 . . . . . . . . . 10  |-  ( [. y  /  x ]. ph  <->  ta )
4743, 46anbi12i 733 . . . . . . . . 9  |-  ( (
[. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )  <->  ( th  /\  ta )
)
48 ovex 6678 . . . . . . . . . 10  |-  ( y  +  1 )  e. 
_V
49 2nn0ind.8 . . . . . . . . . 10  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  et ) )
5048, 49sbcie 3470 . . . . . . . . 9  |-  ( [. ( y  +  1 )  /  x ]. ph  <->  et )
5140, 47, 503imtr4g 285 . . . . . . . 8  |-  ( y  e.  NN  ->  (
( [. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )  ->  [. ( y  +  1 )  /  x ]. ph ) )
5251imp 445 . . . . . . 7  |-  ( ( y  e.  NN  /\  ( [. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )
)  ->  [. ( y  +  1 )  /  x ]. ph )
5339, 52jca 554 . . . . . 6  |-  ( ( y  e.  NN  /\  ( [. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )
)  ->  ( [. ( ( y  +  1 )  -  1 )  /  x ]. ph 
/\  [. ( y  +  1 )  /  x ]. ph ) )
5453ex 450 . . . . 5  |-  ( y  e.  NN  ->  (
( [. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )  ->  ( [. ( ( y  +  1 )  -  1 )  /  x ]. ph  /\  [. (
y  +  1 )  /  x ]. ph )
) )
555, 9, 13, 17, 31, 54nnind 11038 . . . 4  |-  ( ( A  +  1 )  e.  NN  ->  ( [. ( ( A  + 
1 )  -  1 )  /  x ]. ph 
/\  [. ( A  + 
1 )  /  x ]. ph ) )
561, 55syl 17 . . 3  |-  ( A  e.  NN0  ->  ( [. ( ( A  + 
1 )  -  1 )  /  x ]. ph 
/\  [. ( A  + 
1 )  /  x ]. ph ) )
57 nn0cn 11302 . . . . . . 7  |-  ( A  e.  NN0  ->  A  e.  CC )
58 pncan 10287 . . . . . . 7  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  + 
1 )  -  1 )  =  A )
5957, 34, 58sylancl 694 . . . . . 6  |-  ( A  e.  NN0  ->  ( ( A  +  1 )  -  1 )  =  A )
6059sbceq1d 3440 . . . . 5  |-  ( A  e.  NN0  ->  ( [. ( ( A  + 
1 )  -  1 )  /  x ]. ph  <->  [. A  /  x ]. ph ) )
6160biimpa 501 . . . 4  |-  ( ( A  e.  NN0  /\  [. ( ( A  + 
1 )  -  1 )  /  x ]. ph )  ->  [. A  /  x ]. ph )
6261adantrr 753 . . 3  |-  ( ( A  e.  NN0  /\  ( [. ( ( A  +  1 )  - 
1 )  /  x ]. ph  /\  [. ( A  +  1 )  /  x ]. ph )
)  ->  [. A  /  x ]. ph )
6356, 62mpdan 702 . 2  |-  ( A  e.  NN0  ->  [. A  /  x ]. ph )
64 2nn0ind.9 . . 3  |-  ( x  =  A  ->  ( ph 
<->  rh ) )
6564sbcieg 3468 . 2  |-  ( A  e.  NN0  ->  ( [. A  /  x ]. ph  <->  rh )
)
6663, 65mpbid 222 1  |-  ( A  e.  NN0  ->  rh )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   [.wsbc 3435  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   NNcn 11020   NN0cn0 11292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-nn 11021  df-n0 11293
This theorem is referenced by:  jm2.18  37555  jm2.15nn0  37570  jm2.16nn0  37571
  Copyright terms: Public domain W3C validator