MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abs1m Structured version   Visualization version   Unicode version

Theorem abs1m 14075
Description: For any complex number, there exists a unit-magnitude multiplier that produces its absolute value. Part of proof of Theorem 13-2.12 of [Gleason] p. 195. (Contributed by NM, 26-Mar-2005.)
Assertion
Ref Expression
abs1m  |-  ( A  e.  CC  ->  E. x  e.  CC  ( ( abs `  x )  =  1  /\  ( abs `  A
)  =  ( x  x.  A ) ) )
Distinct variable group:    x, A

Proof of Theorem abs1m
StepHypRef Expression
1 fveq2 6191 . . . . . 6  |-  ( A  =  0  ->  ( abs `  A )  =  ( abs `  0
) )
2 abs0 14025 . . . . . 6  |-  ( abs `  0 )  =  0
31, 2syl6eq 2672 . . . . 5  |-  ( A  =  0  ->  ( abs `  A )  =  0 )
4 oveq2 6658 . . . . 5  |-  ( A  =  0  ->  (
x  x.  A )  =  ( x  x.  0 ) )
53, 4eqeq12d 2637 . . . 4  |-  ( A  =  0  ->  (
( abs `  A
)  =  ( x  x.  A )  <->  0  =  ( x  x.  0
) ) )
65anbi2d 740 . . 3  |-  ( A  =  0  ->  (
( ( abs `  x
)  =  1  /\  ( abs `  A
)  =  ( x  x.  A ) )  <-> 
( ( abs `  x
)  =  1  /\  0  =  ( x  x.  0 ) ) ) )
76rexbidv 3052 . 2  |-  ( A  =  0  ->  ( E. x  e.  CC  ( ( abs `  x
)  =  1  /\  ( abs `  A
)  =  ( x  x.  A ) )  <->  E. x  e.  CC  ( ( abs `  x
)  =  1  /\  0  =  ( x  x.  0 ) ) ) )
8 simpl 473 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  A  e.  CC )
98cjcld 13936 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( * `  A
)  e.  CC )
10 abscl 14018 . . . . . 6  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
1110adantr 481 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  e.  RR )
1211recnd 10068 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  e.  CC )
13 abs00 14029 . . . . . 6  |-  ( A  e.  CC  ->  (
( abs `  A
)  =  0  <->  A  =  0 ) )
1413necon3bid 2838 . . . . 5  |-  ( A  e.  CC  ->  (
( abs `  A
)  =/=  0  <->  A  =/=  0 ) )
1514biimpar 502 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  =/=  0 )
169, 12, 15divcld 10801 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( * `  A )  /  ( abs `  A ) )  e.  CC )
17 absdiv 14035 . . . . 5  |-  ( ( ( * `  A
)  e.  CC  /\  ( abs `  A )  e.  CC  /\  ( abs `  A )  =/=  0 )  ->  ( abs `  ( ( * `
 A )  / 
( abs `  A
) ) )  =  ( ( abs `  (
* `  A )
)  /  ( abs `  ( abs `  A
) ) ) )
189, 12, 15, 17syl3anc 1326 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  (
( * `  A
)  /  ( abs `  A ) ) )  =  ( ( abs `  ( * `  A
) )  /  ( abs `  ( abs `  A
) ) ) )
19 abscj 14019 . . . . . 6  |-  ( A  e.  CC  ->  ( abs `  ( * `  A ) )  =  ( abs `  A
) )
2019adantr 481 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  (
* `  A )
)  =  ( abs `  A ) )
21 absidm 14063 . . . . . 6  |-  ( A  e.  CC  ->  ( abs `  ( abs `  A
) )  =  ( abs `  A ) )
2221adantr 481 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  ( abs `  A ) )  =  ( abs `  A
) )
2320, 22oveq12d 6668 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( abs `  (
* `  A )
)  /  ( abs `  ( abs `  A
) ) )  =  ( ( abs `  A
)  /  ( abs `  A ) ) )
2412, 15dividd 10799 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( abs `  A
)  /  ( abs `  A ) )  =  1 )
2518, 23, 243eqtrd 2660 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  (
( * `  A
)  /  ( abs `  A ) ) )  =  1 )
268, 9, 12, 15divassd 10836 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( A  x.  ( * `  A
) )  /  ( abs `  A ) )  =  ( A  x.  ( ( * `  A )  /  ( abs `  A ) ) ) )
2712sqvald 13005 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( abs `  A
) ^ 2 )  =  ( ( abs `  A )  x.  ( abs `  A ) ) )
28 absvalsq 14020 . . . . . . 7  |-  ( A  e.  CC  ->  (
( abs `  A
) ^ 2 )  =  ( A  x.  ( * `  A
) ) )
2928adantr 481 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( abs `  A
) ^ 2 )  =  ( A  x.  ( * `  A
) ) )
3027, 29eqtr3d 2658 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( abs `  A
)  x.  ( abs `  A ) )  =  ( A  x.  (
* `  A )
) )
3112, 12, 15, 30mvllmuld 10857 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  =  ( ( A  x.  ( * `
 A ) )  /  ( abs `  A
) ) )
3216, 8mulcomd 10061 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( ( * `
 A )  / 
( abs `  A
) )  x.  A
)  =  ( A  x.  ( ( * `
 A )  / 
( abs `  A
) ) ) )
3326, 31, 323eqtr4d 2666 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  =  ( ( ( * `  A
)  /  ( abs `  A ) )  x.  A ) )
34 fveq2 6191 . . . . . 6  |-  ( x  =  ( ( * `
 A )  / 
( abs `  A
) )  ->  ( abs `  x )  =  ( abs `  (
( * `  A
)  /  ( abs `  A ) ) ) )
3534eqeq1d 2624 . . . . 5  |-  ( x  =  ( ( * `
 A )  / 
( abs `  A
) )  ->  (
( abs `  x
)  =  1  <->  ( abs `  ( ( * `
 A )  / 
( abs `  A
) ) )  =  1 ) )
36 oveq1 6657 . . . . . 6  |-  ( x  =  ( ( * `
 A )  / 
( abs `  A
) )  ->  (
x  x.  A )  =  ( ( ( * `  A )  /  ( abs `  A
) )  x.  A
) )
3736eqeq2d 2632 . . . . 5  |-  ( x  =  ( ( * `
 A )  / 
( abs `  A
) )  ->  (
( abs `  A
)  =  ( x  x.  A )  <->  ( abs `  A )  =  ( ( ( * `  A )  /  ( abs `  A ) )  x.  A ) ) )
3835, 37anbi12d 747 . . . 4  |-  ( x  =  ( ( * `
 A )  / 
( abs `  A
) )  ->  (
( ( abs `  x
)  =  1  /\  ( abs `  A
)  =  ( x  x.  A ) )  <-> 
( ( abs `  (
( * `  A
)  /  ( abs `  A ) ) )  =  1  /\  ( abs `  A )  =  ( ( ( * `
 A )  / 
( abs `  A
) )  x.  A
) ) ) )
3938rspcev 3309 . . 3  |-  ( ( ( ( * `  A )  /  ( abs `  A ) )  e.  CC  /\  (
( abs `  (
( * `  A
)  /  ( abs `  A ) ) )  =  1  /\  ( abs `  A )  =  ( ( ( * `
 A )  / 
( abs `  A
) )  x.  A
) ) )  ->  E. x  e.  CC  ( ( abs `  x
)  =  1  /\  ( abs `  A
)  =  ( x  x.  A ) ) )
4016, 25, 33, 39syl12anc 1324 . 2  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  E. x  e.  CC  ( ( abs `  x
)  =  1  /\  ( abs `  A
)  =  ( x  x.  A ) ) )
41 ax-icn 9995 . . . 4  |-  _i  e.  CC
42 absi 14026 . . . . 5  |-  ( abs `  _i )  =  1
43 it0e0 11254 . . . . . 6  |-  ( _i  x.  0 )  =  0
4443eqcomi 2631 . . . . 5  |-  0  =  ( _i  x.  0 )
4542, 44pm3.2i 471 . . . 4  |-  ( ( abs `  _i )  =  1  /\  0  =  ( _i  x.  0 ) )
46 fveq2 6191 . . . . . . 7  |-  ( x  =  _i  ->  ( abs `  x )  =  ( abs `  _i ) )
4746eqeq1d 2624 . . . . . 6  |-  ( x  =  _i  ->  (
( abs `  x
)  =  1  <->  ( abs `  _i )  =  1 ) )
48 oveq1 6657 . . . . . . 7  |-  ( x  =  _i  ->  (
x  x.  0 )  =  ( _i  x.  0 ) )
4948eqeq2d 2632 . . . . . 6  |-  ( x  =  _i  ->  (
0  =  ( x  x.  0 )  <->  0  =  ( _i  x.  0
) ) )
5047, 49anbi12d 747 . . . . 5  |-  ( x  =  _i  ->  (
( ( abs `  x
)  =  1  /\  0  =  ( x  x.  0 ) )  <-> 
( ( abs `  _i )  =  1  /\  0  =  ( _i  x.  0 ) ) ) )
5150rspcev 3309 . . . 4  |-  ( ( _i  e.  CC  /\  ( ( abs `  _i )  =  1  /\  0  =  ( _i  x.  0 ) ) )  ->  E. x  e.  CC  ( ( abs `  x
)  =  1  /\  0  =  ( x  x.  0 ) ) )
5241, 45, 51mp2an 708 . . 3  |-  E. x  e.  CC  ( ( abs `  x )  =  1  /\  0  =  ( x  x.  0 ) )
5352a1i 11 . 2  |-  ( A  e.  CC  ->  E. x  e.  CC  ( ( abs `  x )  =  1  /\  0  =  ( x  x.  0 ) ) )
547, 40, 53pm2.61ne 2879 1  |-  ( A  e.  CC  ->  E. x  e.  CC  ( ( abs `  x )  =  1  /\  ( abs `  A
)  =  ( x  x.  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937   _ici 9938    x. cmul 9941    / cdiv 10684   2c2 11070   ^cexp 12860   *ccj 13836   abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator