| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abstri | Structured version Visualization version Unicode version | ||
| Description: Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. (Contributed by NM, 7-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| abstri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 11090 |
. . . . . 6
| |
| 2 | 1 | a1i 11 |
. . . . 5
|
| 3 | simpl 473 |
. . . . . . 7
| |
| 4 | simpr 477 |
. . . . . . . 8
| |
| 5 | 4 | cjcld 13936 |
. . . . . . 7
|
| 6 | 3, 5 | mulcld 10060 |
. . . . . 6
|
| 7 | 6 | recld 13934 |
. . . . 5
|
| 8 | 2, 7 | remulcld 10070 |
. . . 4
|
| 9 | abscl 14018 |
. . . . . . 7
| |
| 10 | 3, 9 | syl 17 |
. . . . . 6
|
| 11 | abscl 14018 |
. . . . . . 7
| |
| 12 | 4, 11 | syl 17 |
. . . . . 6
|
| 13 | 10, 12 | remulcld 10070 |
. . . . 5
|
| 14 | 2, 13 | remulcld 10070 |
. . . 4
|
| 15 | 10 | resqcld 13035 |
. . . . 5
|
| 16 | 12 | resqcld 13035 |
. . . . 5
|
| 17 | 15, 16 | readdcld 10069 |
. . . 4
|
| 18 | releabs 14061 |
. . . . . . 7
| |
| 19 | 6, 18 | syl 17 |
. . . . . 6
|
| 20 | absmul 14034 |
. . . . . . . 8
| |
| 21 | 3, 5, 20 | syl2anc 693 |
. . . . . . 7
|
| 22 | abscj 14019 |
. . . . . . . . 9
| |
| 23 | 4, 22 | syl 17 |
. . . . . . . 8
|
| 24 | 23 | oveq2d 6666 |
. . . . . . 7
|
| 25 | 21, 24 | eqtrd 2656 |
. . . . . 6
|
| 26 | 19, 25 | breqtrd 4679 |
. . . . 5
|
| 27 | 2rp 11837 |
. . . . . . 7
| |
| 28 | 27 | a1i 11 |
. . . . . 6
|
| 29 | 7, 13, 28 | lemul2d 11916 |
. . . . 5
|
| 30 | 26, 29 | mpbid 222 |
. . . 4
|
| 31 | 8, 14, 17, 30 | leadd2dd 10642 |
. . 3
|
| 32 | sqabsadd 14022 |
. . 3
| |
| 33 | 10 | recnd 10068 |
. . . . 5
|
| 34 | 12 | recnd 10068 |
. . . . 5
|
| 35 | binom2 12979 |
. . . . 5
| |
| 36 | 33, 34, 35 | syl2anc 693 |
. . . 4
|
| 37 | 15 | recnd 10068 |
. . . . 5
|
| 38 | 14 | recnd 10068 |
. . . . 5
|
| 39 | 16 | recnd 10068 |
. . . . 5
|
| 40 | 37, 38, 39 | add32d 10263 |
. . . 4
|
| 41 | 36, 40 | eqtrd 2656 |
. . 3
|
| 42 | 31, 32, 41 | 3brtr4d 4685 |
. 2
|
| 43 | addcl 10018 |
. . . 4
| |
| 44 | abscl 14018 |
. . . 4
| |
| 45 | 43, 44 | syl 17 |
. . 3
|
| 46 | 10, 12 | readdcld 10069 |
. . 3
|
| 47 | absge0 14027 |
. . . 4
| |
| 48 | 43, 47 | syl 17 |
. . 3
|
| 49 | absge0 14027 |
. . . . 5
| |
| 50 | 3, 49 | syl 17 |
. . . 4
|
| 51 | absge0 14027 |
. . . . 5
| |
| 52 | 4, 51 | syl 17 |
. . . 4
|
| 53 | 10, 12, 50, 52 | addge0d 10603 |
. . 3
|
| 54 | 45, 46, 48, 53 | le2sqd 13044 |
. 2
|
| 55 | 42, 54 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 |
| This theorem is referenced by: abs3dif 14071 abs2dif2 14073 abstrii 14147 abstrid 14195 absabv 19803 cnnv 27532 ftc1anclem7 33491 ftc1anclem8 33492 |
| Copyright terms: Public domain | W3C validator |