MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinlem3a Structured version   Visualization version   Unicode version

Theorem asinlem3a 24597
Description: Lemma for asinlem3 24598. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
asinlem3a  |-  ( ( A  e.  CC  /\  ( Im `  A )  <_  0 )  -> 
0  <_  ( Re `  ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) ) ) )

Proof of Theorem asinlem3a
StepHypRef Expression
1 imcl 13851 . . . . 5  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
21adantr 481 . . . 4  |-  ( ( A  e.  CC  /\  ( Im `  A )  <_  0 )  -> 
( Im `  A
)  e.  RR )
32renegcld 10457 . . 3  |-  ( ( A  e.  CC  /\  ( Im `  A )  <_  0 )  ->  -u ( Im `  A
)  e.  RR )
4 ax-1cn 9994 . . . . . 6  |-  1  e.  CC
5 sqcl 12925 . . . . . . 7  |-  ( A  e.  CC  ->  ( A ^ 2 )  e.  CC )
65adantr 481 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Im `  A )  <_  0 )  -> 
( A ^ 2 )  e.  CC )
7 subcl 10280 . . . . . 6  |-  ( ( 1  e.  CC  /\  ( A ^ 2 )  e.  CC )  -> 
( 1  -  ( A ^ 2 ) )  e.  CC )
84, 6, 7sylancr 695 . . . . 5  |-  ( ( A  e.  CC  /\  ( Im `  A )  <_  0 )  -> 
( 1  -  ( A ^ 2 ) )  e.  CC )
98sqrtcld 14176 . . . 4  |-  ( ( A  e.  CC  /\  ( Im `  A )  <_  0 )  -> 
( sqr `  (
1  -  ( A ^ 2 ) ) )  e.  CC )
109recld 13934 . . 3  |-  ( ( A  e.  CC  /\  ( Im `  A )  <_  0 )  -> 
( Re `  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) )  e.  RR )
111le0neg1d 10599 . . . 4  |-  ( A  e.  CC  ->  (
( Im `  A
)  <_  0  <->  0  <_  -u ( Im `  A ) ) )
1211biimpa 501 . . 3  |-  ( ( A  e.  CC  /\  ( Im `  A )  <_  0 )  -> 
0  <_  -u ( Im
`  A ) )
138sqrtrege0d 14177 . . 3  |-  ( ( A  e.  CC  /\  ( Im `  A )  <_  0 )  -> 
0  <_  ( Re `  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) )
143, 10, 12, 13addge0d 10603 . 2  |-  ( ( A  e.  CC  /\  ( Im `  A )  <_  0 )  -> 
0  <_  ( -u (
Im `  A )  +  ( Re `  ( sqr `  ( 1  -  ( A ^
2 ) ) ) ) ) )
15 ax-icn 9995 . . . . 5  |-  _i  e.  CC
16 simpl 473 . . . . 5  |-  ( ( A  e.  CC  /\  ( Im `  A )  <_  0 )  ->  A  e.  CC )
17 mulcl 10020 . . . . 5  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
1815, 16, 17sylancr 695 . . . 4  |-  ( ( A  e.  CC  /\  ( Im `  A )  <_  0 )  -> 
( _i  x.  A
)  e.  CC )
1918, 9readdd 13954 . . 3  |-  ( ( A  e.  CC  /\  ( Im `  A )  <_  0 )  -> 
( Re `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) )  =  ( ( Re `  ( _i  x.  A
) )  +  ( Re `  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) )
20 negicn 10282 . . . . . . 7  |-  -u _i  e.  CC
21 mulcl 10020 . . . . . . 7  |-  ( (
-u _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  e.  CC )
2220, 16, 21sylancr 695 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Im `  A )  <_  0 )  -> 
( -u _i  x.  A
)  e.  CC )
2322renegd 13949 . . . . 5  |-  ( ( A  e.  CC  /\  ( Im `  A )  <_  0 )  -> 
( Re `  -u ( -u _i  x.  A ) )  =  -u (
Re `  ( -u _i  x.  A ) ) )
2415negnegi 10351 . . . . . . . 8  |-  -u -u _i  =  _i
2524oveq1i 6660 . . . . . . 7  |-  ( -u -u _i  x.  A )  =  ( _i  x.  A )
26 mulneg1 10466 . . . . . . . 8  |-  ( (
-u _i  e.  CC  /\  A  e.  CC )  ->  ( -u -u _i  x.  A )  =  -u ( -u _i  x.  A
) )
2720, 16, 26sylancr 695 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Im `  A )  <_  0 )  -> 
( -u -u _i  x.  A
)  =  -u ( -u _i  x.  A ) )
2825, 27syl5eqr 2670 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Im `  A )  <_  0 )  -> 
( _i  x.  A
)  =  -u ( -u _i  x.  A ) )
2928fveq2d 6195 . . . . 5  |-  ( ( A  e.  CC  /\  ( Im `  A )  <_  0 )  -> 
( Re `  (
_i  x.  A )
)  =  ( Re
`  -u ( -u _i  x.  A ) ) )
30 imre 13848 . . . . . . 7  |-  ( A  e.  CC  ->  (
Im `  A )  =  ( Re `  ( -u _i  x.  A
) ) )
3130adantr 481 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Im `  A )  <_  0 )  -> 
( Im `  A
)  =  ( Re
`  ( -u _i  x.  A ) ) )
3231negeqd 10275 . . . . 5  |-  ( ( A  e.  CC  /\  ( Im `  A )  <_  0 )  ->  -u ( Im `  A
)  =  -u (
Re `  ( -u _i  x.  A ) ) )
3323, 29, 323eqtr4d 2666 . . . 4  |-  ( ( A  e.  CC  /\  ( Im `  A )  <_  0 )  -> 
( Re `  (
_i  x.  A )
)  =  -u (
Im `  A )
)
3433oveq1d 6665 . . 3  |-  ( ( A  e.  CC  /\  ( Im `  A )  <_  0 )  -> 
( ( Re `  ( _i  x.  A
) )  +  ( Re `  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) )  =  ( -u ( Im
`  A )  +  ( Re `  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) )
3519, 34eqtrd 2656 . 2  |-  ( ( A  e.  CC  /\  ( Im `  A )  <_  0 )  -> 
( Re `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) )  =  ( -u ( Im
`  A )  +  ( Re `  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) )
3614, 35breqtrrd 4681 1  |-  ( ( A  e.  CC  /\  ( Im `  A )  <_  0 )  -> 
0  <_  ( Re `  ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937   _ici 9938    + caddc 9939    x. cmul 9941    <_ cle 10075    - cmin 10266   -ucneg 10267   2c2 11070   ^cexp 12860   Recre 13837   Imcim 13838   sqrcsqrt 13973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  asinlem3  24598
  Copyright terms: Public domain W3C validator