MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinlem2 Structured version   Visualization version   Unicode version

Theorem asinlem2 24596
Description: The argument to the logarithm in df-asin 24592 has the property that replacing  A with  -u A in the expression gives the reciprocal. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
asinlem2  |-  ( A  e.  CC  ->  (
( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) )  x.  ( ( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) )  =  1 )

Proof of Theorem asinlem2
StepHypRef Expression
1 ax-icn 9995 . . . . 5  |-  _i  e.  CC
2 mulcl 10020 . . . . 5  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
31, 2mpan 706 . . . 4  |-  ( A  e.  CC  ->  (
_i  x.  A )  e.  CC )
4 ax-1cn 9994 . . . . . 6  |-  1  e.  CC
5 sqcl 12925 . . . . . 6  |-  ( A  e.  CC  ->  ( A ^ 2 )  e.  CC )
6 subcl 10280 . . . . . 6  |-  ( ( 1  e.  CC  /\  ( A ^ 2 )  e.  CC )  -> 
( 1  -  ( A ^ 2 ) )  e.  CC )
74, 5, 6sylancr 695 . . . . 5  |-  ( A  e.  CC  ->  (
1  -  ( A ^ 2 ) )  e.  CC )
87sqrtcld 14176 . . . 4  |-  ( A  e.  CC  ->  ( sqr `  ( 1  -  ( A ^ 2 ) ) )  e.  CC )
93, 8addcomd 10238 . . 3  |-  ( A  e.  CC  ->  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) )  =  ( ( sqr `  (
1  -  ( A ^ 2 ) ) )  +  ( _i  x.  A ) ) )
10 mulneg2 10467 . . . . . 6  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  -u A
)  =  -u (
_i  x.  A )
)
111, 10mpan 706 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  -u A )  =  -u ( _i  x.  A ) )
12 sqneg 12923 . . . . . . 7  |-  ( A  e.  CC  ->  ( -u A ^ 2 )  =  ( A ^
2 ) )
1312oveq2d 6666 . . . . . 6  |-  ( A  e.  CC  ->  (
1  -  ( -u A ^ 2 ) )  =  ( 1  -  ( A ^ 2 ) ) )
1413fveq2d 6195 . . . . 5  |-  ( A  e.  CC  ->  ( sqr `  ( 1  -  ( -u A ^
2 ) ) )  =  ( sqr `  (
1  -  ( A ^ 2 ) ) ) )
1511, 14oveq12d 6668 . . . 4  |-  ( A  e.  CC  ->  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) )  =  ( -u ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) )
163negcld 10379 . . . . 5  |-  ( A  e.  CC  ->  -u (
_i  x.  A )  e.  CC )
1716, 8addcomd 10238 . . . 4  |-  ( A  e.  CC  ->  ( -u ( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) )  =  ( ( sqr `  (
1  -  ( A ^ 2 ) ) )  +  -u (
_i  x.  A )
) )
188, 3negsubd 10398 . . . 4  |-  ( A  e.  CC  ->  (
( sqr `  (
1  -  ( A ^ 2 ) ) )  +  -u (
_i  x.  A )
)  =  ( ( sqr `  ( 1  -  ( A ^
2 ) ) )  -  ( _i  x.  A ) ) )
1915, 17, 183eqtrd 2660 . . 3  |-  ( A  e.  CC  ->  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) )  =  ( ( sqr `  (
1  -  ( A ^ 2 ) ) )  -  ( _i  x.  A ) ) )
209, 19oveq12d 6668 . 2  |-  ( A  e.  CC  ->  (
( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) )  x.  ( ( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) )  =  ( ( ( sqr `  ( 1  -  ( A ^
2 ) ) )  +  ( _i  x.  A ) )  x.  ( ( sqr `  (
1  -  ( A ^ 2 ) ) )  -  ( _i  x.  A ) ) ) )
217sqsqrtd 14178 . . . 4  |-  ( A  e.  CC  ->  (
( sqr `  (
1  -  ( A ^ 2 ) ) ) ^ 2 )  =  ( 1  -  ( A ^ 2 ) ) )
22 sqmul 12926 . . . . . 6  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( ( _i  x.  A ) ^ 2 )  =  ( ( _i ^ 2 )  x.  ( A ^
2 ) ) )
231, 22mpan 706 . . . . 5  |-  ( A  e.  CC  ->  (
( _i  x.  A
) ^ 2 )  =  ( ( _i
^ 2 )  x.  ( A ^ 2 ) ) )
24 i2 12965 . . . . . . 7  |-  ( _i
^ 2 )  = 
-u 1
2524oveq1i 6660 . . . . . 6  |-  ( ( _i ^ 2 )  x.  ( A ^
2 ) )  =  ( -u 1  x.  ( A ^ 2 ) )
265mulm1d 10482 . . . . . 6  |-  ( A  e.  CC  ->  ( -u 1  x.  ( A ^ 2 ) )  =  -u ( A ^
2 ) )
2725, 26syl5eq 2668 . . . . 5  |-  ( A  e.  CC  ->  (
( _i ^ 2 )  x.  ( A ^ 2 ) )  =  -u ( A ^
2 ) )
2823, 27eqtrd 2656 . . . 4  |-  ( A  e.  CC  ->  (
( _i  x.  A
) ^ 2 )  =  -u ( A ^
2 ) )
2921, 28oveq12d 6668 . . 3  |-  ( A  e.  CC  ->  (
( ( sqr `  (
1  -  ( A ^ 2 ) ) ) ^ 2 )  -  ( ( _i  x.  A ) ^
2 ) )  =  ( ( 1  -  ( A ^ 2 ) )  -  -u ( A ^ 2 ) ) )
30 subsq 12972 . . . 4  |-  ( ( ( sqr `  (
1  -  ( A ^ 2 ) ) )  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( ( ( sqr `  ( 1  -  ( A ^
2 ) ) ) ^ 2 )  -  ( ( _i  x.  A ) ^ 2 ) )  =  ( ( ( sqr `  (
1  -  ( A ^ 2 ) ) )  +  ( _i  x.  A ) )  x.  ( ( sqr `  ( 1  -  ( A ^ 2 ) ) )  -  ( _i  x.  A ) ) ) )
318, 3, 30syl2anc 693 . . 3  |-  ( A  e.  CC  ->  (
( ( sqr `  (
1  -  ( A ^ 2 ) ) ) ^ 2 )  -  ( ( _i  x.  A ) ^
2 ) )  =  ( ( ( sqr `  ( 1  -  ( A ^ 2 ) ) )  +  ( _i  x.  A ) )  x.  ( ( sqr `  ( 1  -  ( A ^ 2 ) ) )  -  ( _i  x.  A ) ) ) )
327, 5subnegd 10399 . . 3  |-  ( A  e.  CC  ->  (
( 1  -  ( A ^ 2 ) )  -  -u ( A ^
2 ) )  =  ( ( 1  -  ( A ^ 2 ) )  +  ( A ^ 2 ) ) )
3329, 31, 323eqtr3d 2664 . 2  |-  ( A  e.  CC  ->  (
( ( sqr `  (
1  -  ( A ^ 2 ) ) )  +  ( _i  x.  A ) )  x.  ( ( sqr `  ( 1  -  ( A ^ 2 ) ) )  -  ( _i  x.  A ) ) )  =  ( ( 1  -  ( A ^ 2 ) )  +  ( A ^
2 ) ) )
34 npcan 10290 . . 3  |-  ( ( 1  e.  CC  /\  ( A ^ 2 )  e.  CC )  -> 
( ( 1  -  ( A ^ 2 ) )  +  ( A ^ 2 ) )  =  1 )
354, 5, 34sylancr 695 . 2  |-  ( A  e.  CC  ->  (
( 1  -  ( A ^ 2 ) )  +  ( A ^
2 ) )  =  1 )
3620, 33, 353eqtrd 2660 1  |-  ( A  e.  CC  ->  (
( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) )  x.  ( ( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) )  =  1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   CCcc 9934   1c1 9937   _ici 9938    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267   2c2 11070   ^cexp 12860   sqrcsqrt 13973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  asinlem3  24598  asinneg  24613
  Copyright terms: Public domain W3C validator