| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bcp1ctr | Structured version Visualization version Unicode version | ||
| Description: Ratio of two central binomial coefficients. (Contributed by Mario Carneiro, 10-Mar-2014.) |
| Ref | Expression |
|---|---|
| bcp1ctr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2t1e2 11176 |
. . . . . . 7
| |
| 2 | df-2 11079 |
. . . . . . 7
| |
| 3 | 1, 2 | eqtri 2644 |
. . . . . 6
|
| 4 | 3 | oveq2i 6661 |
. . . . 5
|
| 5 | nn0cn 11302 |
. . . . . 6
| |
| 6 | 2cn 11091 |
. . . . . . 7
| |
| 7 | ax-1cn 9994 |
. . . . . . 7
| |
| 8 | adddi 10025 |
. . . . . . 7
| |
| 9 | 6, 7, 8 | mp3an13 1415 |
. . . . . 6
|
| 10 | 5, 9 | syl 17 |
. . . . 5
|
| 11 | 2nn0 11309 |
. . . . . . . 8
| |
| 12 | nn0mulcl 11329 |
. . . . . . . 8
| |
| 13 | 11, 12 | mpan 706 |
. . . . . . 7
|
| 14 | 13 | nn0cnd 11353 |
. . . . . 6
|
| 15 | addass 10023 |
. . . . . . 7
| |
| 16 | 7, 7, 15 | mp3an23 1416 |
. . . . . 6
|
| 17 | 14, 16 | syl 17 |
. . . . 5
|
| 18 | 4, 10, 17 | 3eqtr4a 2682 |
. . . 4
|
| 19 | 18 | oveq1d 6665 |
. . 3
|
| 20 | peano2nn0 11333 |
. . . . 5
| |
| 21 | 13, 20 | syl 17 |
. . . 4
|
| 22 | nn0p1nn 11332 |
. . . . 5
| |
| 23 | 22 | nnzd 11481 |
. . . 4
|
| 24 | bcpasc 13108 |
. . . 4
| |
| 25 | 21, 23, 24 | syl2anc 693 |
. . 3
|
| 26 | 19, 25 | eqtr4d 2659 |
. 2
|
| 27 | nn0z 11400 |
. . . . . . 7
| |
| 28 | bccl 13109 |
. . . . . . 7
| |
| 29 | 13, 27, 28 | syl2anc 693 |
. . . . . 6
|
| 30 | 29 | nn0cnd 11353 |
. . . . 5
|
| 31 | 2cnd 11093 |
. . . . 5
| |
| 32 | 21 | nn0red 11352 |
. . . . . . 7
|
| 33 | 32, 22 | nndivred 11069 |
. . . . . 6
|
| 34 | 33 | recnd 10068 |
. . . . 5
|
| 35 | 30, 31, 34 | mul12d 10245 |
. . . 4
|
| 36 | 1cnd 10056 |
. . . . . . . . . 10
| |
| 37 | 14, 36, 5 | addsubd 10413 |
. . . . . . . . 9
|
| 38 | 5 | 2timesd 11275 |
. . . . . . . . . . . 12
|
| 39 | 38 | oveq1d 6665 |
. . . . . . . . . . 11
|
| 40 | 5, 5 | pncand 10393 |
. . . . . . . . . . 11
|
| 41 | 39, 40 | eqtrd 2656 |
. . . . . . . . . 10
|
| 42 | 41 | oveq1d 6665 |
. . . . . . . . 9
|
| 43 | 37, 42 | eqtr2d 2657 |
. . . . . . . 8
|
| 44 | 43 | oveq2d 6666 |
. . . . . . 7
|
| 45 | 44 | oveq2d 6666 |
. . . . . 6
|
| 46 | fzctr 12451 |
. . . . . . 7
| |
| 47 | bcp1n 13103 |
. . . . . . 7
| |
| 48 | 46, 47 | syl 17 |
. . . . . 6
|
| 49 | 45, 48 | eqtr4d 2659 |
. . . . 5
|
| 50 | 49 | oveq2d 6666 |
. . . 4
|
| 51 | 35, 50 | eqtrd 2656 |
. . 3
|
| 52 | bccmpl 13096 |
. . . . . . 7
| |
| 53 | 21, 23, 52 | syl2anc 693 |
. . . . . 6
|
| 54 | 38 | oveq1d 6665 |
. . . . . . . . . 10
|
| 55 | 5, 5, 36 | addassd 10062 |
. . . . . . . . . 10
|
| 56 | 54, 55 | eqtrd 2656 |
. . . . . . . . 9
|
| 57 | 56 | oveq1d 6665 |
. . . . . . . 8
|
| 58 | 22 | nncnd 11036 |
. . . . . . . . 9
|
| 59 | 5, 58 | pncand 10393 |
. . . . . . . 8
|
| 60 | 57, 59 | eqtrd 2656 |
. . . . . . 7
|
| 61 | 60 | oveq2d 6666 |
. . . . . 6
|
| 62 | 53, 61 | eqtrd 2656 |
. . . . 5
|
| 63 | pncan 10287 |
. . . . . . 7
| |
| 64 | 5, 7, 63 | sylancl 694 |
. . . . . 6
|
| 65 | 64 | oveq2d 6666 |
. . . . 5
|
| 66 | 62, 65 | oveq12d 6668 |
. . . 4
|
| 67 | bccl 13109 |
. . . . . . 7
| |
| 68 | 21, 27, 67 | syl2anc 693 |
. . . . . 6
|
| 69 | 68 | nn0cnd 11353 |
. . . . 5
|
| 70 | 69 | 2timesd 11275 |
. . . 4
|
| 71 | 66, 70 | eqtr4d 2659 |
. . 3
|
| 72 | 51, 71 | eqtr4d 2659 |
. 2
|
| 73 | 26, 72 | eqtr4d 2659 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fz 12327 df-seq 12802 df-fac 13061 df-bc 13090 |
| This theorem is referenced by: bclbnd 25005 |
| Copyright terms: Public domain | W3C validator |