Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsegle Structured version   Visualization version   Unicode version

Theorem brsegle 32215
Description: Binary relation form of the segment comparison relationship. (Contributed by Scott Fenton, 11-Oct-2013.)
Assertion
Ref Expression
brsegle  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.  Seg<_  <. C ,  D >.  <->  E. y  e.  ( EE `  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) ) )
Distinct variable groups:    y, A    y, B    y, C    y, D    y, N

Proof of Theorem brsegle
Dummy variables  a 
b  c  d  n  p  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 4932 . . 3  |-  <. A ,  B >.  e.  _V
2 opex 4932 . . 3  |-  <. C ,  D >.  e.  _V
3 eqeq1 2626 . . . . . . . 8  |-  ( p  =  <. A ,  B >.  ->  ( p  = 
<. a ,  b >.  <->  <. A ,  B >.  = 
<. a ,  b >.
) )
4 eqcom 2629 . . . . . . . 8  |-  ( <. A ,  B >.  = 
<. a ,  b >.  <->  <.
a ,  b >.  =  <. A ,  B >. )
53, 4syl6bb 276 . . . . . . 7  |-  ( p  =  <. A ,  B >.  ->  ( p  = 
<. a ,  b >.  <->  <.
a ,  b >.  =  <. A ,  B >. ) )
653anbi1d 1403 . . . . . 6  |-  ( p  =  <. A ,  B >.  ->  ( ( p  =  <. a ,  b
>.  /\  q  =  <. c ,  d >.  /\  E. y  e.  ( EE `  n ) ( y 
Btwn  <. c ,  d
>.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) )  <->  ( <. a ,  b >.  =  <. A ,  B >.  /\  q  =  <. c ,  d
>.  /\  E. y  e.  ( EE `  n
) ( y  Btwn  <.
c ,  d >.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) ) ) )
76rexbidv 3052 . . . . 5  |-  ( p  =  <. A ,  B >.  ->  ( E. d  e.  ( EE `  n
) ( p  = 
<. a ,  b >.  /\  q  =  <. c ,  d >.  /\  E. y  e.  ( EE `  n ) ( y 
Btwn  <. c ,  d
>.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) )  <->  E. d  e.  ( EE `  n
) ( <. a ,  b >.  =  <. A ,  B >.  /\  q  =  <. c ,  d
>.  /\  E. y  e.  ( EE `  n
) ( y  Btwn  <.
c ,  d >.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) ) ) )
872rexbidv 3057 . . . 4  |-  ( p  =  <. A ,  B >.  ->  ( E. b  e.  ( EE `  n
) E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) ( p  = 
<. a ,  b >.  /\  q  =  <. c ,  d >.  /\  E. y  e.  ( EE `  n ) ( y 
Btwn  <. c ,  d
>.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) )  <->  E. b  e.  ( EE `  n
) E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) ( <. a ,  b >.  =  <. A ,  B >.  /\  q  =  <. c ,  d
>.  /\  E. y  e.  ( EE `  n
) ( y  Btwn  <.
c ,  d >.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) ) ) )
982rexbidv 3057 . . 3  |-  ( p  =  <. A ,  B >.  ->  ( E. n  e.  NN  E. a  e.  ( EE `  n
) E. b  e.  ( EE `  n
) E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) ( p  = 
<. a ,  b >.  /\  q  =  <. c ,  d >.  /\  E. y  e.  ( EE `  n ) ( y 
Btwn  <. c ,  d
>.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) )  <->  E. n  e.  NN  E. a  e.  ( EE `  n
) E. b  e.  ( EE `  n
) E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) ( <. a ,  b >.  =  <. A ,  B >.  /\  q  =  <. c ,  d
>.  /\  E. y  e.  ( EE `  n
) ( y  Btwn  <.
c ,  d >.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) ) ) )
10 eqeq1 2626 . . . . . . . 8  |-  ( q  =  <. C ,  D >.  ->  ( q  = 
<. c ,  d >.  <->  <. C ,  D >.  = 
<. c ,  d >.
) )
11 eqcom 2629 . . . . . . . 8  |-  ( <. C ,  D >.  = 
<. c ,  d >.  <->  <.
c ,  d >.  =  <. C ,  D >. )
1210, 11syl6bb 276 . . . . . . 7  |-  ( q  =  <. C ,  D >.  ->  ( q  = 
<. c ,  d >.  <->  <.
c ,  d >.  =  <. C ,  D >. ) )
13123anbi2d 1404 . . . . . 6  |-  ( q  =  <. C ,  D >.  ->  ( ( <.
a ,  b >.  =  <. A ,  B >.  /\  q  =  <. c ,  d >.  /\  E. y  e.  ( EE `  n ) ( y 
Btwn  <. c ,  d
>.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) )  <->  ( <. a ,  b >.  =  <. A ,  B >.  /\  <. c ,  d >.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  n ) ( y 
Btwn  <. c ,  d
>.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) ) ) )
1413rexbidv 3052 . . . . 5  |-  ( q  =  <. C ,  D >.  ->  ( E. d  e.  ( EE `  n
) ( <. a ,  b >.  =  <. A ,  B >.  /\  q  =  <. c ,  d
>.  /\  E. y  e.  ( EE `  n
) ( y  Btwn  <.
c ,  d >.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) )  <->  E. d  e.  ( EE `  n
) ( <. a ,  b >.  =  <. A ,  B >.  /\  <. c ,  d >.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  n ) ( y 
Btwn  <. c ,  d
>.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) ) ) )
15142rexbidv 3057 . . . 4  |-  ( q  =  <. C ,  D >.  ->  ( E. b  e.  ( EE `  n
) E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) ( <. a ,  b >.  =  <. A ,  B >.  /\  q  =  <. c ,  d
>.  /\  E. y  e.  ( EE `  n
) ( y  Btwn  <.
c ,  d >.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) )  <->  E. b  e.  ( EE `  n
) E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) ( <. a ,  b >.  =  <. A ,  B >.  /\  <. c ,  d >.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  n ) ( y 
Btwn  <. c ,  d
>.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) ) ) )
16152rexbidv 3057 . . 3  |-  ( q  =  <. C ,  D >.  ->  ( E. n  e.  NN  E. a  e.  ( EE `  n
) E. b  e.  ( EE `  n
) E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) ( <. a ,  b >.  =  <. A ,  B >.  /\  q  =  <. c ,  d
>.  /\  E. y  e.  ( EE `  n
) ( y  Btwn  <.
c ,  d >.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) )  <->  E. n  e.  NN  E. a  e.  ( EE `  n
) E. b  e.  ( EE `  n
) E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) ( <. a ,  b >.  =  <. A ,  B >.  /\  <. c ,  d >.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  n ) ( y 
Btwn  <. c ,  d
>.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) ) ) )
17 df-segle 32214 . . 3  |-  Seg<_  =  { <. p ,  q >.  |  E. n  e.  NN  E. a  e.  ( EE
`  n ) E. b  e.  ( EE
`  n ) E. c  e.  ( EE
`  n ) E. d  e.  ( EE
`  n ) ( p  =  <. a ,  b >.  /\  q  =  <. c ,  d
>.  /\  E. y  e.  ( EE `  n
) ( y  Btwn  <.
c ,  d >.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) ) }
181, 2, 9, 16, 17brab 4998 . 2  |-  ( <. A ,  B >.  Seg<_  <. C ,  D >.  <->  E. n  e.  NN  E. a  e.  ( EE `  n
) E. b  e.  ( EE `  n
) E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) ( <. a ,  b >.  =  <. A ,  B >.  /\  <. c ,  d >.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  n ) ( y 
Btwn  <. c ,  d
>.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) ) )
19 vex 3203 . . . . . . . . 9  |-  a  e. 
_V
20 vex 3203 . . . . . . . . 9  |-  b  e. 
_V
2119, 20opth 4945 . . . . . . . 8  |-  ( <.
a ,  b >.  =  <. A ,  B >.  <-> 
( a  =  A  /\  b  =  B ) )
22 vex 3203 . . . . . . . . 9  |-  c  e. 
_V
23 vex 3203 . . . . . . . . 9  |-  d  e. 
_V
2422, 23opth 4945 . . . . . . . 8  |-  ( <.
c ,  d >.  =  <. C ,  D >.  <-> 
( c  =  C  /\  d  =  D ) )
25 biid 251 . . . . . . . 8  |-  ( E. y  e.  ( EE
`  n ) ( y  Btwn  <. c ,  d >.  /\  <. a ,  b >.Cgr <. c ,  y >. )  <->  E. y  e.  ( EE
`  n ) ( y  Btwn  <. c ,  d >.  /\  <. a ,  b >.Cgr <. c ,  y >. )
)
2621, 24, 253anbi123i 1251 . . . . . . 7  |-  ( (
<. a ,  b >.  =  <. A ,  B >.  /\  <. c ,  d
>.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  n
) ( y  Btwn  <.
c ,  d >.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) )  <->  ( (
a  =  A  /\  b  =  B )  /\  ( c  =  C  /\  d  =  D )  /\  E. y  e.  ( EE `  n
) ( y  Btwn  <.
c ,  d >.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) ) )
27262rexbii 3042 . . . . . 6  |-  ( E. c  e.  ( EE
`  n ) E. d  e.  ( EE
`  n ) (
<. a ,  b >.  =  <. A ,  B >.  /\  <. c ,  d
>.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  n
) ( y  Btwn  <.
c ,  d >.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) )  <->  E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) ( ( a  =  A  /\  b  =  B )  /\  (
c  =  C  /\  d  =  D )  /\  E. y  e.  ( EE `  n ) ( y  Btwn  <. c ,  d >.  /\  <. a ,  b >.Cgr <. c ,  y >. )
) )
28272rexbii 3042 . . . . 5  |-  ( E. a  e.  ( EE
`  n ) E. b  e.  ( EE
`  n ) E. c  e.  ( EE
`  n ) E. d  e.  ( EE
`  n ) (
<. a ,  b >.  =  <. A ,  B >.  /\  <. c ,  d
>.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  n
) ( y  Btwn  <.
c ,  d >.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) )  <->  E. a  e.  ( EE `  n
) E. b  e.  ( EE `  n
) E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) ( ( a  =  A  /\  b  =  B )  /\  (
c  =  C  /\  d  =  D )  /\  E. y  e.  ( EE `  n ) ( y  Btwn  <. c ,  d >.  /\  <. a ,  b >.Cgr <. c ,  y >. )
) )
2928rexbii 3041 . . . 4  |-  ( E. n  e.  NN  E. a  e.  ( EE `  n ) E. b  e.  ( EE `  n
) E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) ( <. a ,  b >.  =  <. A ,  B >.  /\  <. c ,  d >.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  n ) ( y 
Btwn  <. c ,  d
>.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) )  <->  E. n  e.  NN  E. a  e.  ( EE `  n
) E. b  e.  ( EE `  n
) E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) ( ( a  =  A  /\  b  =  B )  /\  (
c  =  C  /\  d  =  D )  /\  E. y  e.  ( EE `  n ) ( y  Btwn  <. c ,  d >.  /\  <. a ,  b >.Cgr <. c ,  y >. )
) )
30 simpl2l 1114 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  ->  A  e.  ( EE
`  N ) )
3130ad2antrl 764 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a  =  A  /\  ( b  =  B  /\  ( c  =  C  /\  d  =  D ) ) )  /\  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  /\  n  e.  NN )  /\  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
) )  /\  ( C  e.  ( EE `  n )  /\  D  e.  ( EE `  n
) ) ) ) )  ->  A  e.  ( EE `  N ) )
32 eleenn 25776 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  ( EE `  N )  ->  N  e.  NN )
3331, 32syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  =  A  /\  ( b  =  B  /\  ( c  =  C  /\  d  =  D ) ) )  /\  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  /\  n  e.  NN )  /\  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
) )  /\  ( C  e.  ( EE `  n )  /\  D  e.  ( EE `  n
) ) ) ) )  ->  N  e.  NN )
34 simprlr 803 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  =  A  /\  ( b  =  B  /\  ( c  =  C  /\  d  =  D ) ) )  /\  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  /\  n  e.  NN )  /\  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
) )  /\  ( C  e.  ( EE `  n )  /\  D  e.  ( EE `  n
) ) ) ) )  ->  n  e.  NN )
35 simprll 802 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( ( A  e.  ( EE `  n
)  /\  B  e.  ( EE `  n ) )  /\  ( C  e.  ( EE `  n )  /\  D  e.  ( EE `  n
) ) ) )  ->  A  e.  ( EE `  n ) )
3635adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  =  A  /\  ( b  =  B  /\  ( c  =  C  /\  d  =  D ) ) )  /\  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  /\  n  e.  NN )  /\  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
) )  /\  ( C  e.  ( EE `  n )  /\  D  e.  ( EE `  n
) ) ) ) )  ->  A  e.  ( EE `  n ) )
37 axdimuniq 25793 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N ) )  /\  ( n  e.  NN  /\  A  e.  ( EE `  n
) ) )  ->  N  =  n )
3833, 31, 34, 36, 37syl22anc 1327 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  =  A  /\  ( b  =  B  /\  ( c  =  C  /\  d  =  D ) ) )  /\  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  /\  n  e.  NN )  /\  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
) )  /\  ( C  e.  ( EE `  n )  /\  D  e.  ( EE `  n
) ) ) ) )  ->  N  =  n )
3938fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( ( ( a  =  A  /\  ( b  =  B  /\  ( c  =  C  /\  d  =  D ) ) )  /\  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  /\  n  e.  NN )  /\  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
) )  /\  ( C  e.  ( EE `  n )  /\  D  e.  ( EE `  n
) ) ) ) )  ->  ( EE `  N )  =  ( EE `  n ) )
4039rexeqdv 3145 . . . . . . . . . . . . . 14  |-  ( ( ( a  =  A  /\  ( b  =  B  /\  ( c  =  C  /\  d  =  D ) ) )  /\  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  /\  n  e.  NN )  /\  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
) )  /\  ( C  e.  ( EE `  n )  /\  D  e.  ( EE `  n
) ) ) ) )  ->  ( E. y  e.  ( EE `  N ) ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  <->  E. y  e.  ( EE `  n ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) ) )
4140exbiri 652 . . . . . . . . . . . . 13  |-  ( ( a  =  A  /\  ( b  =  B  /\  ( c  =  C  /\  d  =  D ) ) )  ->  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( ( A  e.  ( EE `  n
)  /\  B  e.  ( EE `  n ) )  /\  ( C  e.  ( EE `  n )  /\  D  e.  ( EE `  n
) ) ) )  ->  ( E. y  e.  ( EE `  n
) ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  ->  E. y  e.  ( EE `  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) ) ) )
4241anassrs 680 . . . . . . . . . . . 12  |-  ( ( ( a  =  A  /\  b  =  B )  /\  ( c  =  C  /\  d  =  D ) )  -> 
( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  /\  n  e.  NN )  /\  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
) )  /\  ( C  e.  ( EE `  n )  /\  D  e.  ( EE `  n
) ) ) )  ->  ( E. y  e.  ( EE `  n
) ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  ->  E. y  e.  ( EE `  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) ) ) )
43 eleq1 2689 . . . . . . . . . . . . . . 15  |-  ( a  =  A  ->  (
a  e.  ( EE
`  n )  <->  A  e.  ( EE `  n ) ) )
44 eleq1 2689 . . . . . . . . . . . . . . 15  |-  ( b  =  B  ->  (
b  e.  ( EE
`  n )  <->  B  e.  ( EE `  n ) ) )
4543, 44bi2anan9 917 . . . . . . . . . . . . . 14  |-  ( ( a  =  A  /\  b  =  B )  ->  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  <->  ( A  e.  ( EE `  n
)  /\  B  e.  ( EE `  n ) ) ) )
46 eleq1 2689 . . . . . . . . . . . . . . 15  |-  ( c  =  C  ->  (
c  e.  ( EE
`  n )  <->  C  e.  ( EE `  n ) ) )
47 eleq1 2689 . . . . . . . . . . . . . . 15  |-  ( d  =  D  ->  (
d  e.  ( EE
`  n )  <->  D  e.  ( EE `  n ) ) )
4846, 47bi2anan9 917 . . . . . . . . . . . . . 14  |-  ( ( c  =  C  /\  d  =  D )  ->  ( ( c  e.  ( EE `  n
)  /\  d  e.  ( EE `  n ) )  <->  ( C  e.  ( EE `  n
)  /\  D  e.  ( EE `  n ) ) ) )
4945, 48bi2anan9 917 . . . . . . . . . . . . 13  |-  ( ( ( a  =  A  /\  b  =  B )  /\  ( c  =  C  /\  d  =  D ) )  -> 
( ( ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n
) )  /\  (
c  e.  ( EE
`  n )  /\  d  e.  ( EE `  n ) ) )  <-> 
( ( A  e.  ( EE `  n
)  /\  B  e.  ( EE `  n ) )  /\  ( C  e.  ( EE `  n )  /\  D  e.  ( EE `  n
) ) ) ) )
5049anbi2d 740 . . . . . . . . . . . 12  |-  ( ( ( a  =  A  /\  b  =  B )  /\  ( c  =  C  /\  d  =  D ) )  -> 
( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  /\  n  e.  NN )  /\  ( ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n
) )  /\  (
c  e.  ( EE
`  n )  /\  d  e.  ( EE `  n ) ) ) )  <->  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  /\  n  e.  NN )  /\  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
) )  /\  ( C  e.  ( EE `  n )  /\  D  e.  ( EE `  n
) ) ) ) ) )
51 opeq12 4404 . . . . . . . . . . . . . . . . 17  |-  ( ( a  =  A  /\  b  =  B )  -> 
<. a ,  b >.  =  <. A ,  B >. )
5251breq1d 4663 . . . . . . . . . . . . . . . 16  |-  ( ( a  =  A  /\  b  =  B )  ->  ( <. a ,  b
>.Cgr <. c ,  y
>. 
<-> 
<. A ,  B >.Cgr <.
c ,  y >.
) )
5352anbi2d 740 . . . . . . . . . . . . . . 15  |-  ( ( a  =  A  /\  b  =  B )  ->  ( ( y  Btwn  <.
c ,  d >.  /\  <. a ,  b
>.Cgr <. c ,  y
>. )  <->  ( y  Btwn  <.
c ,  d >.  /\  <. A ,  B >.Cgr
<. c ,  y >.
) ) )
54 opeq12 4404 . . . . . . . . . . . . . . . . 17  |-  ( ( c  =  C  /\  d  =  D )  -> 
<. c ,  d >.  =  <. C ,  D >. )
5554breq2d 4665 . . . . . . . . . . . . . . . 16  |-  ( ( c  =  C  /\  d  =  D )  ->  ( y  Btwn  <. c ,  d >.  <->  y  Btwn  <. C ,  D >. ) )
56 opeq1 4402 . . . . . . . . . . . . . . . . . 18  |-  ( c  =  C  ->  <. c ,  y >.  =  <. C ,  y >. )
5756breq2d 4665 . . . . . . . . . . . . . . . . 17  |-  ( c  =  C  ->  ( <. A ,  B >.Cgr <.
c ,  y >.  <->  <. A ,  B >.Cgr <. C ,  y >. ) )
5857adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( c  =  C  /\  d  =  D )  ->  ( <. A ,  B >.Cgr
<. c ,  y >.  <->  <. A ,  B >.Cgr <. C ,  y >. ) )
5955, 58anbi12d 747 . . . . . . . . . . . . . . 15  |-  ( ( c  =  C  /\  d  =  D )  ->  ( ( y  Btwn  <.
c ,  d >.  /\  <. A ,  B >.Cgr
<. c ,  y >.
)  <->  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )
6053, 59sylan9bb 736 . . . . . . . . . . . . . 14  |-  ( ( ( a  =  A  /\  b  =  B )  /\  ( c  =  C  /\  d  =  D ) )  -> 
( ( y  Btwn  <.
c ,  d >.  /\  <. a ,  b
>.Cgr <. c ,  y
>. )  <->  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )
6160rexbidv 3052 . . . . . . . . . . . . 13  |-  ( ( ( a  =  A  /\  b  =  B )  /\  ( c  =  C  /\  d  =  D ) )  -> 
( E. y  e.  ( EE `  n
) ( y  Btwn  <.
c ,  d >.  /\  <. a ,  b
>.Cgr <. c ,  y
>. )  <->  E. y  e.  ( EE `  n ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) ) )
6261imbi1d 331 . . . . . . . . . . . 12  |-  ( ( ( a  =  A  /\  b  =  B )  /\  ( c  =  C  /\  d  =  D ) )  -> 
( ( E. y  e.  ( EE `  n
) ( y  Btwn  <.
c ,  d >.  /\  <. a ,  b
>.Cgr <. c ,  y
>. )  ->  E. y  e.  ( EE `  N
) ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) )  <->  ( E. y  e.  ( EE `  n
) ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  ->  E. y  e.  ( EE `  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) ) ) )
6342, 50, 623imtr4d 283 . . . . . . . . . . 11  |-  ( ( ( a  =  A  /\  b  =  B )  /\  ( c  =  C  /\  d  =  D ) )  -> 
( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  /\  n  e.  NN )  /\  ( ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n
) )  /\  (
c  e.  ( EE
`  n )  /\  d  e.  ( EE `  n ) ) ) )  ->  ( E. y  e.  ( EE `  n ) ( y 
Btwn  <. c ,  d
>.  /\  <. a ,  b
>.Cgr <. c ,  y
>. )  ->  E. y  e.  ( EE `  N
) ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) ) )
6463com12 32 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  ( c  e.  ( EE `  n )  /\  d  e.  ( EE `  n
) ) ) )  ->  ( ( ( a  =  A  /\  b  =  B )  /\  ( c  =  C  /\  d  =  D ) )  ->  ( E. y  e.  ( EE `  n ) ( y  Btwn  <. c ,  d >.  /\  <. a ,  b >.Cgr <. c ,  y >. )  ->  E. y  e.  ( EE `  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) ) ) )
6564expd 452 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  ( c  e.  ( EE `  n )  /\  d  e.  ( EE `  n
) ) ) )  ->  ( ( a  =  A  /\  b  =  B )  ->  (
( c  =  C  /\  d  =  D )  ->  ( E. y  e.  ( EE `  n ) ( y 
Btwn  <. c ,  d
>.  /\  <. a ,  b
>.Cgr <. c ,  y
>. )  ->  E. y  e.  ( EE `  N
) ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) ) ) )
66653impd 1281 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  ( c  e.  ( EE `  n )  /\  d  e.  ( EE `  n
) ) ) )  ->  ( ( ( a  =  A  /\  b  =  B )  /\  ( c  =  C  /\  d  =  D )  /\  E. y  e.  ( EE `  n
) ( y  Btwn  <.
c ,  d >.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) )  ->  E. y  e.  ( EE `  N
) ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )
6766expr 643 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n ) ) )  ->  (
( c  e.  ( EE `  n )  /\  d  e.  ( EE `  n ) )  ->  ( (
( a  =  A  /\  b  =  B )  /\  ( c  =  C  /\  d  =  D )  /\  E. y  e.  ( EE `  n ) ( y 
Btwn  <. c ,  d
>.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) )  ->  E. y  e.  ( EE `  N
) ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) ) )
6867rexlimdvv 3037 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n ) ) )  ->  ( E. c  e.  ( EE `  n ) E. d  e.  ( EE
`  n ) ( ( a  =  A  /\  b  =  B )  /\  ( c  =  C  /\  d  =  D )  /\  E. y  e.  ( EE `  n ) ( y 
Btwn  <. c ,  d
>.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) )  ->  E. y  e.  ( EE `  N
) ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )
6968rexlimdvva 3038 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  ->  ( E. a  e.  ( EE `  n
) E. b  e.  ( EE `  n
) E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) ( ( a  =  A  /\  b  =  B )  /\  (
c  =  C  /\  d  =  D )  /\  E. y  e.  ( EE `  n ) ( y  Btwn  <. c ,  d >.  /\  <. a ,  b >.Cgr <. c ,  y >. )
)  ->  E. y  e.  ( EE `  N
) ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )
7069rexlimdva 3031 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( E. n  e.  NN  E. a  e.  ( EE `  n
) E. b  e.  ( EE `  n
) E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) ( ( a  =  A  /\  b  =  B )  /\  (
c  =  C  /\  d  =  D )  /\  E. y  e.  ( EE `  n ) ( y  Btwn  <. c ,  d >.  /\  <. a ,  b >.Cgr <. c ,  y >. )
)  ->  E. y  e.  ( EE `  N
) ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )
7129, 70syl5bi 232 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( E. n  e.  NN  E. a  e.  ( EE `  n
) E. b  e.  ( EE `  n
) E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) ( <. a ,  b >.  =  <. A ,  B >.  /\  <. c ,  d >.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  n ) ( y 
Btwn  <. c ,  d
>.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) )  ->  E. y  e.  ( EE `  N
) ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )
72 simpl1 1064 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  E. y  e.  ( EE
`  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) )  ->  N  e.  NN )
73 simpl2l 1114 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  E. y  e.  ( EE
`  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) )  ->  A  e.  ( EE `  N
) )
74 simpl2r 1115 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  E. y  e.  ( EE
`  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) )  ->  B  e.  ( EE `  N
) )
75 simpl3l 1116 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  E. y  e.  ( EE
`  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) )  ->  C  e.  ( EE `  N
) )
76 simpl3r 1117 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  E. y  e.  ( EE
`  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) )  ->  D  e.  ( EE `  N
) )
77 eqidd 2623 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  E. y  e.  ( EE
`  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) )  ->  <. A ,  B >.  =  <. A ,  B >. )
78 eqidd 2623 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  E. y  e.  ( EE
`  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) )  ->  <. C ,  D >.  =  <. C ,  D >. )
79 simpr 477 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  E. y  e.  ( EE
`  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) )  ->  E. y  e.  ( EE `  N
) ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) )
80 opeq1 4402 . . . . . . . . . 10  |-  ( c  =  C  ->  <. c ,  d >.  =  <. C ,  d >. )
8180eqeq1d 2624 . . . . . . . . 9  |-  ( c  =  C  ->  ( <. c ,  d >.  =  <. C ,  D >.  <->  <. C ,  d >.  =  <. C ,  D >. ) )
8280breq2d 4665 . . . . . . . . . . 11  |-  ( c  =  C  ->  (
y  Btwn  <. c ,  d >.  <->  y  Btwn  <. C , 
d >. ) )
8382, 57anbi12d 747 . . . . . . . . . 10  |-  ( c  =  C  ->  (
( y  Btwn  <. c ,  d >.  /\  <. A ,  B >.Cgr <. c ,  y >. )  <->  ( y  Btwn  <. C , 
d >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) ) )
8483rexbidv 3052 . . . . . . . . 9  |-  ( c  =  C  ->  ( E. y  e.  ( EE `  N ) ( y  Btwn  <. c ,  d >.  /\  <. A ,  B >.Cgr <. c ,  y
>. )  <->  E. y  e.  ( EE `  N ) ( y  Btwn  <. C , 
d >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) ) )
8581, 843anbi23d 1402 . . . . . . . 8  |-  ( c  =  C  ->  (
( <. A ,  B >.  =  <. A ,  B >.  /\  <. c ,  d
>.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  N
) ( y  Btwn  <.
c ,  d >.  /\  <. A ,  B >.Cgr
<. c ,  y >.
) )  <->  ( <. A ,  B >.  =  <. A ,  B >.  /\  <. C ,  d >.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  N ) ( y 
Btwn  <. C ,  d
>.  /\  <. A ,  B >.Cgr
<. C ,  y >.
) ) ) )
86 opeq2 4403 . . . . . . . . . 10  |-  ( d  =  D  ->  <. C , 
d >.  =  <. C ,  D >. )
8786eqeq1d 2624 . . . . . . . . 9  |-  ( d  =  D  ->  ( <. C ,  d >.  =  <. C ,  D >.  <->  <. C ,  D >.  = 
<. C ,  D >. ) )
8886breq2d 4665 . . . . . . . . . . 11  |-  ( d  =  D  ->  (
y  Btwn  <. C , 
d >. 
<->  y  Btwn  <. C ,  D >. ) )
8988anbi1d 741 . . . . . . . . . 10  |-  ( d  =  D  ->  (
( y  Btwn  <. C , 
d >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  <->  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )
9089rexbidv 3052 . . . . . . . . 9  |-  ( d  =  D  ->  ( E. y  e.  ( EE `  N ) ( y  Btwn  <. C , 
d >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  <->  E. y  e.  ( EE `  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) ) )
9187, 903anbi23d 1402 . . . . . . . 8  |-  ( d  =  D  ->  (
( <. A ,  B >.  =  <. A ,  B >.  /\  <. C ,  d
>.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  N
) ( y  Btwn  <. C ,  d >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) )  <->  ( <. A ,  B >.  =  <. A ,  B >.  /\  <. C ,  D >.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  N
) ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) ) )
9285, 91rspc2ev 3324 . . . . . . 7  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  ( <. A ,  B >.  = 
<. A ,  B >.  /\ 
<. C ,  D >.  = 
<. C ,  D >.  /\ 
E. y  e.  ( EE `  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) ) )  ->  E. c  e.  ( EE `  N ) E. d  e.  ( EE
`  N ) (
<. A ,  B >.  = 
<. A ,  B >.  /\ 
<. c ,  d >.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  N
) ( y  Btwn  <.
c ,  d >.  /\  <. A ,  B >.Cgr
<. c ,  y >.
) ) )
9375, 76, 77, 78, 79, 92syl113anc 1338 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  E. y  e.  ( EE
`  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) )  ->  E. c  e.  ( EE `  N
) E. d  e.  ( EE `  N
) ( <. A ,  B >.  =  <. A ,  B >.  /\  <. c ,  d >.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  N ) ( y 
Btwn  <. c ,  d
>.  /\  <. A ,  B >.Cgr
<. c ,  y >.
) ) )
94 opeq1 4402 . . . . . . . . . 10  |-  ( a  =  A  ->  <. a ,  b >.  =  <. A ,  b >. )
9594eqeq1d 2624 . . . . . . . . 9  |-  ( a  =  A  ->  ( <. a ,  b >.  =  <. A ,  B >.  <->  <. A ,  b >.  =  <. A ,  B >. ) )
9694breq1d 4663 . . . . . . . . . . 11  |-  ( a  =  A  ->  ( <. a ,  b >.Cgr <. c ,  y >.  <->  <. A ,  b >.Cgr <.
c ,  y >.
) )
9796anbi2d 740 . . . . . . . . . 10  |-  ( a  =  A  ->  (
( y  Btwn  <. c ,  d >.  /\  <. a ,  b >.Cgr <. c ,  y >. )  <->  ( y  Btwn  <. c ,  d >.  /\  <. A , 
b >.Cgr <. c ,  y
>. ) ) )
9897rexbidv 3052 . . . . . . . . 9  |-  ( a  =  A  ->  ( E. y  e.  ( EE `  N ) ( y  Btwn  <. c ,  d >.  /\  <. a ,  b >.Cgr <. c ,  y >. )  <->  E. y  e.  ( EE
`  N ) ( y  Btwn  <. c ,  d >.  /\  <. A , 
b >.Cgr <. c ,  y
>. ) ) )
9995, 983anbi13d 1401 . . . . . . . 8  |-  ( a  =  A  ->  (
( <. a ,  b
>.  =  <. A ,  B >.  /\  <. c ,  d >.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  N ) ( y 
Btwn  <. c ,  d
>.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) )  <->  ( <. A ,  b >.  =  <. A ,  B >.  /\  <. c ,  d >.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  N ) ( y 
Btwn  <. c ,  d
>.  /\  <. A ,  b
>.Cgr <. c ,  y
>. ) ) ) )
100992rexbidv 3057 . . . . . . 7  |-  ( a  =  A  ->  ( E. c  e.  ( EE `  N ) E. d  e.  ( EE
`  N ) (
<. a ,  b >.  =  <. A ,  B >.  /\  <. c ,  d
>.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  N
) ( y  Btwn  <.
c ,  d >.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) )  <->  E. c  e.  ( EE `  N
) E. d  e.  ( EE `  N
) ( <. A , 
b >.  =  <. A ,  B >.  /\  <. c ,  d >.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  N ) ( y 
Btwn  <. c ,  d
>.  /\  <. A ,  b
>.Cgr <. c ,  y
>. ) ) ) )
101 opeq2 4403 . . . . . . . . . 10  |-  ( b  =  B  ->  <. A , 
b >.  =  <. A ,  B >. )
102101eqeq1d 2624 . . . . . . . . 9  |-  ( b  =  B  ->  ( <. A ,  b >.  =  <. A ,  B >.  <->  <. A ,  B >.  = 
<. A ,  B >. ) )
103101breq1d 4663 . . . . . . . . . . 11  |-  ( b  =  B  ->  ( <. A ,  b >.Cgr <. c ,  y >.  <->  <. A ,  B >.Cgr <.
c ,  y >.
) )
104103anbi2d 740 . . . . . . . . . 10  |-  ( b  =  B  ->  (
( y  Btwn  <. c ,  d >.  /\  <. A ,  b >.Cgr <. c ,  y >. )  <->  ( y  Btwn  <. c ,  d >.  /\  <. A ,  B >.Cgr <. c ,  y
>. ) ) )
105104rexbidv 3052 . . . . . . . . 9  |-  ( b  =  B  ->  ( E. y  e.  ( EE `  N ) ( y  Btwn  <. c ,  d >.  /\  <. A , 
b >.Cgr <. c ,  y
>. )  <->  E. y  e.  ( EE `  N ) ( y  Btwn  <. c ,  d >.  /\  <. A ,  B >.Cgr <. c ,  y >. )
) )
106102, 1053anbi13d 1401 . . . . . . . 8  |-  ( b  =  B  ->  (
( <. A ,  b
>.  =  <. A ,  B >.  /\  <. c ,  d >.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  N ) ( y 
Btwn  <. c ,  d
>.  /\  <. A ,  b
>.Cgr <. c ,  y
>. ) )  <->  ( <. A ,  B >.  =  <. A ,  B >.  /\  <. c ,  d >.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  N ) ( y 
Btwn  <. c ,  d
>.  /\  <. A ,  B >.Cgr
<. c ,  y >.
) ) ) )
1071062rexbidv 3057 . . . . . . 7  |-  ( b  =  B  ->  ( E. c  e.  ( EE `  N ) E. d  e.  ( EE
`  N ) (
<. A ,  b >.  =  <. A ,  B >.  /\  <. c ,  d
>.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  N
) ( y  Btwn  <.
c ,  d >.  /\  <. A ,  b
>.Cgr <. c ,  y
>. ) )  <->  E. c  e.  ( EE `  N
) E. d  e.  ( EE `  N
) ( <. A ,  B >.  =  <. A ,  B >.  /\  <. c ,  d >.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  N ) ( y 
Btwn  <. c ,  d
>.  /\  <. A ,  B >.Cgr
<. c ,  y >.
) ) ) )
108100, 107rspc2ev 3324 . . . . . 6  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  E. c  e.  ( EE `  N ) E. d  e.  ( EE `  N
) ( <. A ,  B >.  =  <. A ,  B >.  /\  <. c ,  d >.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  N ) ( y 
Btwn  <. c ,  d
>.  /\  <. A ,  B >.Cgr
<. c ,  y >.
) ) )  ->  E. a  e.  ( EE `  N ) E. b  e.  ( EE
`  N ) E. c  e.  ( EE
`  N ) E. d  e.  ( EE
`  N ) (
<. a ,  b >.  =  <. A ,  B >.  /\  <. c ,  d
>.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  N
) ( y  Btwn  <.
c ,  d >.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) ) )
10973, 74, 93, 108syl3anc 1326 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  E. y  e.  ( EE
`  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) )  ->  E. a  e.  ( EE `  N
) E. b  e.  ( EE `  N
) E. c  e.  ( EE `  N
) E. d  e.  ( EE `  N
) ( <. a ,  b >.  =  <. A ,  B >.  /\  <. c ,  d >.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  N ) ( y 
Btwn  <. c ,  d
>.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) ) )
110 fveq2 6191 . . . . . . 7  |-  ( n  =  N  ->  ( EE `  n )  =  ( EE `  N
) )
111110rexeqdv 3145 . . . . . . . . . . 11  |-  ( n  =  N  ->  ( E. y  e.  ( EE `  n ) ( y  Btwn  <. c ,  d >.  /\  <. a ,  b >.Cgr <. c ,  y >. )  <->  E. y  e.  ( EE
`  N ) ( y  Btwn  <. c ,  d >.  /\  <. a ,  b >.Cgr <. c ,  y >. )
) )
1121113anbi3d 1405 . . . . . . . . . 10  |-  ( n  =  N  ->  (
( <. a ,  b
>.  =  <. A ,  B >.  /\  <. c ,  d >.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  n ) ( y 
Btwn  <. c ,  d
>.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) )  <->  ( <. a ,  b >.  =  <. A ,  B >.  /\  <. c ,  d >.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  N ) ( y 
Btwn  <. c ,  d
>.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) ) ) )
113110, 112rexeqbidv 3153 . . . . . . . . 9  |-  ( n  =  N  ->  ( E. d  e.  ( EE `  n ) (
<. a ,  b >.  =  <. A ,  B >.  /\  <. c ,  d
>.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  n
) ( y  Btwn  <.
c ,  d >.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) )  <->  E. d  e.  ( EE `  N
) ( <. a ,  b >.  =  <. A ,  B >.  /\  <. c ,  d >.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  N ) ( y 
Btwn  <. c ,  d
>.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) ) ) )
114110, 113rexeqbidv 3153 . . . . . . . 8  |-  ( n  =  N  ->  ( E. c  e.  ( EE `  n ) E. d  e.  ( EE
`  n ) (
<. a ,  b >.  =  <. A ,  B >.  /\  <. c ,  d
>.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  n
) ( y  Btwn  <.
c ,  d >.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) )  <->  E. c  e.  ( EE `  N
) E. d  e.  ( EE `  N
) ( <. a ,  b >.  =  <. A ,  B >.  /\  <. c ,  d >.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  N ) ( y 
Btwn  <. c ,  d
>.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) ) ) )
115110, 114rexeqbidv 3153 . . . . . . 7  |-  ( n  =  N  ->  ( E. b  e.  ( EE `  n ) E. c  e.  ( EE
`  n ) E. d  e.  ( EE
`  n ) (
<. a ,  b >.  =  <. A ,  B >.  /\  <. c ,  d
>.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  n
) ( y  Btwn  <.
c ,  d >.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) )  <->  E. b  e.  ( EE `  N
) E. c  e.  ( EE `  N
) E. d  e.  ( EE `  N
) ( <. a ,  b >.  =  <. A ,  B >.  /\  <. c ,  d >.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  N ) ( y 
Btwn  <. c ,  d
>.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) ) ) )
116110, 115rexeqbidv 3153 . . . . . 6  |-  ( n  =  N  ->  ( E. a  e.  ( EE `  n ) E. b  e.  ( EE
`  n ) E. c  e.  ( EE
`  n ) E. d  e.  ( EE
`  n ) (
<. a ,  b >.  =  <. A ,  B >.  /\  <. c ,  d
>.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  n
) ( y  Btwn  <.
c ,  d >.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) )  <->  E. a  e.  ( EE `  N
) E. b  e.  ( EE `  N
) E. c  e.  ( EE `  N
) E. d  e.  ( EE `  N
) ( <. a ,  b >.  =  <. A ,  B >.  /\  <. c ,  d >.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  N ) ( y 
Btwn  <. c ,  d
>.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) ) ) )
117116rspcev 3309 . . . . 5  |-  ( ( N  e.  NN  /\  E. a  e.  ( EE
`  N ) E. b  e.  ( EE
`  N ) E. c  e.  ( EE
`  N ) E. d  e.  ( EE
`  N ) (
<. a ,  b >.  =  <. A ,  B >.  /\  <. c ,  d
>.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  N
) ( y  Btwn  <.
c ,  d >.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) ) )  ->  E. n  e.  NN  E. a  e.  ( EE
`  n ) E. b  e.  ( EE
`  n ) E. c  e.  ( EE
`  n ) E. d  e.  ( EE
`  n ) (
<. a ,  b >.  =  <. A ,  B >.  /\  <. c ,  d
>.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  n
) ( y  Btwn  <.
c ,  d >.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) ) )
11872, 109, 117syl2anc 693 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  E. y  e.  ( EE
`  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) )  ->  E. n  e.  NN  E. a  e.  ( EE `  n
) E. b  e.  ( EE `  n
) E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) ( <. a ,  b >.  =  <. A ,  B >.  /\  <. c ,  d >.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  n ) ( y 
Btwn  <. c ,  d
>.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) ) )
119118ex 450 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( E. y  e.  ( EE `  N
) ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  ->  E. n  e.  NN  E. a  e.  ( EE
`  n ) E. b  e.  ( EE
`  n ) E. c  e.  ( EE
`  n ) E. d  e.  ( EE
`  n ) (
<. a ,  b >.  =  <. A ,  B >.  /\  <. c ,  d
>.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  n
) ( y  Btwn  <.
c ,  d >.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) ) ) )
12071, 119impbid 202 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( E. n  e.  NN  E. a  e.  ( EE `  n
) E. b  e.  ( EE `  n
) E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) ( <. a ,  b >.  =  <. A ,  B >.  /\  <. c ,  d >.  =  <. C ,  D >.  /\  E. y  e.  ( EE `  n ) ( y 
Btwn  <. c ,  d
>.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) )  <->  E. y  e.  ( EE `  N
) ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )
12118, 120syl5bb 272 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.  Seg<_  <. C ,  D >.  <->  E. y  e.  ( EE `  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   <.cop 4183   class class class wbr 4653   ` cfv 5888   NNcn 11020   EEcee 25768    Btwn cbtwn 25769  Cgrccgr 25770    Seg<_ csegle 32213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-z 11378  df-uz 11688  df-fz 12327  df-ee 25771  df-segle 32214
This theorem is referenced by:  brsegle2  32216  seglecgr12im  32217  seglerflx  32219  seglemin  32220  segletr  32221  segleantisym  32222  seglelin  32223  btwnsegle  32224
  Copyright terms: Public domain W3C validator