![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3impd | Structured version Visualization version Unicode version |
Description: Importation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
Ref | Expression |
---|---|
3imp1.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3impd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp1.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | com4l 92 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | 3imp 1256 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | com12 32 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
This theorem is referenced by: 3imp2 1282 3impexp 1289 oprabid 6677 wfrlem12 7426 isinf 8173 axdc3lem4 9275 iccid 12220 difreicc 12304 relexpaddg 13793 issubg4 17613 reconn 22631 bcthlem2 23122 dvfsumrlim3 23796 ax5seg 25818 axcontlem4 25847 usgr2wlkneq 26652 frgrwopreg 27187 cvmlift3lem4 31304 frrlem11 31792 fscgr 32187 idinside 32191 brsegle 32215 seglecgr12im 32217 imp5q 32306 elicc3 32311 areacirclem1 33500 areacirclem2 33501 areacirclem4 33503 areacirc 33505 filbcmb 33535 fzmul 33537 islshpcv 34340 cvrat3 34728 4atexlem7 35361 relexpmulg 38002 gneispacess2 38444 iunconnlem2 39171 fmtnoprmfac1 41477 fmtnoprmfac2 41479 |
Copyright terms: Public domain | W3C validator |