Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climfveq Structured version   Visualization version   Unicode version

Theorem climfveq 39901
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
climfveq.1  |-  Z  =  ( ZZ>= `  M )
climfveq.2  |-  ( ph  ->  F  e.  V )
climfveq.3  |-  ( ph  ->  G  e.  W )
climfveq.4  |-  ( ph  ->  M  e.  ZZ )
climfveq.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( G `  k ) )
Assertion
Ref Expression
climfveq  |-  ( ph  ->  (  ~~>  `  F )  =  (  ~~>  `  G ) )
Distinct variable groups:    k, F    k, G    k, Z    ph, k
Allowed substitution hints:    M( k)    V( k)    W( k)

Proof of Theorem climfveq
StepHypRef Expression
1 climdm 14285 . . . . 5  |-  ( F  e.  dom  ~~>  <->  F  ~~>  (  ~~>  `  F
) )
21biimpi 206 . . . 4  |-  ( F  e.  dom  ~~>  ->  F  ~~>  ( 
~~>  `  F ) )
32adantl 482 . . 3  |-  ( (
ph  /\  F  e.  dom 
~~>  )  ->  F  ~~>  (  ~~>  `  F
) )
43, 1sylibr 224 . . . . . 6  |-  ( (
ph  /\  F  e.  dom 
~~>  )  ->  F  e. 
dom 
~~>  )
5 climfveq.1 . . . . . . . 8  |-  Z  =  ( ZZ>= `  M )
6 climfveq.2 . . . . . . . 8  |-  ( ph  ->  F  e.  V )
7 climfveq.3 . . . . . . . 8  |-  ( ph  ->  G  e.  W )
8 climfveq.4 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
9 climfveq.5 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( G `  k ) )
105, 6, 7, 8, 9climeldmeq 39897 . . . . . . 7  |-  ( ph  ->  ( F  e.  dom  ~~>  <->  G  e.  dom  ~~>  ) )
1110adantr 481 . . . . . 6  |-  ( (
ph  /\  F  e.  dom 
~~>  )  ->  ( F  e.  dom  ~~>  <->  G  e.  dom 
~~>  ) )
124, 11mpbid 222 . . . . 5  |-  ( (
ph  /\  F  e.  dom 
~~>  )  ->  G  e. 
dom 
~~>  )
13 climdm 14285 . . . . 5  |-  ( G  e.  dom  ~~>  <->  G  ~~>  (  ~~>  `  G
) )
1412, 13sylib 208 . . . 4  |-  ( (
ph  /\  F  e.  dom 
~~>  )  ->  G  ~~>  (  ~~>  `  G
) )
157adantr 481 . . . . 5  |-  ( (
ph  /\  F  e.  dom 
~~>  )  ->  G  e.  W )
166adantr 481 . . . . 5  |-  ( (
ph  /\  F  e.  dom 
~~>  )  ->  F  e.  V )
178adantr 481 . . . . 5  |-  ( (
ph  /\  F  e.  dom 
~~>  )  ->  M  e.  ZZ )
189eqcomd 2628 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( F `  k ) )
1918adantlr 751 . . . . 5  |-  ( ( ( ph  /\  F  e.  dom  ~~>  )  /\  k  e.  Z )  ->  ( G `  k )  =  ( F `  k ) )
205, 15, 16, 17, 19climeq 14298 . . . 4  |-  ( (
ph  /\  F  e.  dom 
~~>  )  ->  ( G  ~~>  (  ~~>  `  G )  <->  F  ~~>  (  ~~>  `  G )
) )
2114, 20mpbid 222 . . 3  |-  ( (
ph  /\  F  e.  dom 
~~>  )  ->  F  ~~>  (  ~~>  `  G
) )
22 climuni 14283 . . 3  |-  ( ( F  ~~>  (  ~~>  `  F
)  /\  F  ~~>  (  ~~>  `  G
) )  ->  (  ~~>  `  F )  =  (  ~~>  `
 G ) )
233, 21, 22syl2anc 693 . 2  |-  ( (
ph  /\  F  e.  dom 
~~>  )  ->  (  ~~>  `  F
)  =  (  ~~>  `  G
) )
24 ndmfv 6218 . . . 4  |-  ( -.  F  e.  dom  ~~>  ->  (  ~~>  `  F )  =  (/) )
2524adantl 482 . . 3  |-  ( (
ph  /\  -.  F  e.  dom  ~~>  )  ->  (  ~~>  `  F )  =  (/) )
26 simpr 477 . . . . 5  |-  ( (
ph  /\  -.  F  e.  dom  ~~>  )  ->  -.  F  e.  dom  ~~>  )
2710adantr 481 . . . . 5  |-  ( (
ph  /\  -.  F  e.  dom  ~~>  )  ->  ( F  e.  dom  ~~>  <->  G  e.  dom 
~~>  ) )
2826, 27mtbid 314 . . . 4  |-  ( (
ph  /\  -.  F  e.  dom  ~~>  )  ->  -.  G  e.  dom  ~~>  )
29 ndmfv 6218 . . . 4  |-  ( -.  G  e.  dom  ~~>  ->  (  ~~>  `  G )  =  (/) )
3028, 29syl 17 . . 3  |-  ( (
ph  /\  -.  F  e.  dom  ~~>  )  ->  (  ~~>  `  G )  =  (/) )
3125, 30eqtr4d 2659 . 2  |-  ( (
ph  /\  -.  F  e.  dom  ~~>  )  ->  (  ~~>  `  F )  =  (  ~~>  `
 G ) )
3223, 31pm2.61dan 832 1  |-  ( ph  ->  (  ~~>  `  F )  =  (  ~~>  `  G ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   (/)c0 3915   class class class wbr 4653   dom cdm 5114   ` cfv 5888   ZZcz 11377   ZZ>=cuz 11687    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219
This theorem is referenced by:  climfveqmpt  39903  climfveqmpt3  39914
  Copyright terms: Public domain W3C validator