MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climuni Structured version   Visualization version   Unicode version

Theorem climuni 14283
Description: An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 2-Oct-1999.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
climuni  |-  ( ( F  ~~>  A  /\  F  ~~>  B )  ->  A  =  B )

Proof of Theorem climuni
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1z 11407 . 2  |-  1  e.  ZZ
2 nnuz 11723 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
3 1zzd 11408 . . . . . . 7  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  1  e.  ZZ )
4 climcl 14230 . . . . . . . . . . 11  |-  ( F  ~~>  A  ->  A  e.  CC )
543ad2ant1 1082 . . . . . . . . . 10  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  A  e.  CC )
6 climcl 14230 . . . . . . . . . . 11  |-  ( F  ~~>  B  ->  B  e.  CC )
763ad2ant2 1083 . . . . . . . . . 10  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  B  e.  CC )
85, 7subcld 10392 . . . . . . . . 9  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  ( A  -  B )  e.  CC )
9 simp3 1063 . . . . . . . . . 10  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  A  =/=  B )
105, 7, 9subne0d 10401 . . . . . . . . 9  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  ( A  -  B )  =/=  0
)
118, 10absrpcld 14187 . . . . . . . 8  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  ( abs `  ( A  -  B
) )  e.  RR+ )
1211rphalfcld 11884 . . . . . . 7  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  ( ( abs `  ( A  -  B ) )  / 
2 )  e.  RR+ )
13 eqidd 2623 . . . . . . 7  |-  ( ( ( F  ~~>  A  /\  F 
~~>  B  /\  A  =/= 
B )  /\  k  e.  NN )  ->  ( F `  k )  =  ( F `  k ) )
14 simp1 1061 . . . . . . 7  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  F  ~~>  A )
152, 3, 12, 13, 14climi 14241 . . . . . 6  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) ) )
16 simp2 1062 . . . . . . 7  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  F  ~~>  B )
172, 3, 12, 13, 16climi 14241 . . . . . 6  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) ) )
182rexanuz2 14089 . . . . . 6  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( ( abs `  ( A  -  B
) )  /  2
) )  /\  (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  B ) )  <  ( ( abs `  ( A  -  B
) )  /  2
) ) )  <->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) )  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) ) ) )
1915, 17, 18sylanbrc 698 . . . . 5  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) ) )
20 nnz 11399 . . . . . . . . 9  |-  ( j  e.  NN  ->  j  e.  ZZ )
21 uzid 11702 . . . . . . . . 9  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
22 ne0i 3921 . . . . . . . . 9  |-  ( j  e.  ( ZZ>= `  j
)  ->  ( ZZ>= `  j )  =/=  (/) )
23 r19.2z 4060 . . . . . . . . . 10  |-  ( ( ( ZZ>= `  j )  =/=  (/)  /\  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) ) )  ->  E. k  e.  ( ZZ>=
`  j ) ( ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) ) ) )
2423ex 450 . . . . . . . . 9  |-  ( (
ZZ>= `  j )  =/=  (/)  ->  ( A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  E. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) ) ) )
2520, 21, 22, 244syl 19 . . . . . . . 8  |-  ( j  e.  NN  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) ) )  ->  E. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) ) ) )
26 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( F `  k )  e.  CC )
27 simpll 790 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  A  e.  CC )
2826, 27abssubd 14192 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( abs `  (
( F `  k
)  -  A ) )  =  ( abs `  ( A  -  ( F `  k )
) ) )
2928breq1d 4663 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 )  <-> 
( abs `  ( A  -  ( F `  k ) ) )  <  ( ( abs `  ( A  -  B
) )  /  2
) ) )
30 simplr 792 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  B  e.  CC )
31 subcl 10280 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  e.  CC )
3231adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( A  -  B )  e.  CC )
3332abscld 14175 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( abs `  ( A  -  B )
)  e.  RR )
34 abs3lem 14078 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( A  -  B
) )  e.  RR ) )  ->  (
( ( abs `  ( A  -  ( F `  k ) ) )  <  ( ( abs `  ( A  -  B
) )  /  2
)  /\  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  ->  ( abs `  ( A  -  B
) )  <  ( abs `  ( A  -  B ) ) ) )
3527, 30, 26, 33, 34syl22anc 1327 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( ( abs `  ( A  -  ( F `  k ) ) )  <  ( ( abs `  ( A  -  B
) )  /  2
)  /\  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  ->  ( abs `  ( A  -  B
) )  <  ( abs `  ( A  -  B ) ) ) )
3633ltnrd 10171 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  -.  ( abs `  ( A  -  B
) )  <  ( abs `  ( A  -  B ) ) )
3736pm2.21d 118 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( A  -  B
) )  <  ( abs `  ( A  -  B ) )  ->  -.  1  e.  ZZ ) )
3835, 37syld 47 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( ( abs `  ( A  -  ( F `  k ) ) )  <  ( ( abs `  ( A  -  B
) )  /  2
)  /\  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  ->  -.  1  e.  ZZ ) )
3938expd 452 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( A  -  ( F `  k )
) )  <  (
( abs `  ( A  -  B )
)  /  2 )  ->  ( ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 )  ->  -.  1  e.  ZZ ) ) )
4029, 39sylbid 230 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 )  ->  ( ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 )  ->  -.  1  e.  ZZ ) ) )
4140impr 649 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) ) )  ->  (
( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( A  -  B ) )  /  2 )  ->  -.  1  e.  ZZ ) )
4241adantld 483 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) ) )  ->  (
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) )  ->  -.  1  e.  ZZ ) )
4342expimpd 629 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  -.  1  e.  ZZ )
)
4443rexlimdvw 3034 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( E. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  -.  1  e.  ZZ )
)
4525, 44sylan9r 690 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  -.  1  e.  ZZ )
)
4645rexlimdva 3031 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  -.  1  e.  ZZ )
)
475, 7, 46syl2anc 693 . . . . 5  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  -.  1  e.  ZZ )
)
4819, 47mpd 15 . . . 4  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  -.  1  e.  ZZ )
49483expia 1267 . . 3  |-  ( ( F  ~~>  A  /\  F  ~~>  B )  ->  ( A  =/=  B  ->  -.  1  e.  ZZ )
)
5049necon4ad 2813 . 2  |-  ( ( F  ~~>  A  /\  F  ~~>  B )  ->  (
1  e.  ZZ  ->  A  =  B ) )
511, 50mpi 20 1  |-  ( ( F  ~~>  A  /\  F  ~~>  B )  ->  A  =  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   1c1 9937    < clt 10074    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   ZZcz 11377   ZZ>=cuz 11687   abscabs 13974    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219
This theorem is referenced by:  fclim  14284  climeu  14286  summolem2  14447  summo  14448  prodmolem2  14665  prodmo  14666  ef0  14821  efcj  14822  efaddlem  14823  ioombl1lem4  23329  mbflimlem  23434  itg2i1fseq  23522  itg2addlem  23525  plyeq0lem  23966  ulmuni  24146  leibpi  24669  lgamp1  24783  lgam1  24790  sumnnodd  39862  climfveq  39901  climfveqf  39912  climfv  39923  climlimsupcex  40001  climliminflimsupd  40033  stirlinglem15  40305  fouriersw  40448  sge0isum  40644  vonioolem2  40895  vonicclem2  40898
  Copyright terms: Public domain W3C validator