MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlklem2fv2 Structured version   Visualization version   Unicode version

Theorem clwlkclwwlklem2fv2 26897
Description: Lemma 4b for clwlkclwwlklem2a 26899. (Contributed by Alexander van der Vekens, 22-Jun-2018.)
Hypothesis
Ref Expression
clwlkclwwlklem2.f  |-  F  =  ( x  e.  ( 0..^ ( ( # `  P )  -  1 ) )  |->  if ( x  <  ( (
# `  P )  -  2 ) ,  ( `' E `  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) } ) ,  ( `' E `  { ( P `  x ) ,  ( P ` 
0 ) } ) ) )
Assertion
Ref Expression
clwlkclwwlklem2fv2  |-  ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  ->  ( F `  ( ( # `
 P )  - 
2 ) )  =  ( `' E `  { ( P `  ( ( # `  P
)  -  2 ) ) ,  ( P `
 0 ) } ) )
Distinct variable groups:    x, P    x, E
Allowed substitution hint:    F( x)

Proof of Theorem clwlkclwwlklem2fv2
StepHypRef Expression
1 clwlkclwwlklem2.f . . 3  |-  F  =  ( x  e.  ( 0..^ ( ( # `  P )  -  1 ) )  |->  if ( x  <  ( (
# `  P )  -  2 ) ,  ( `' E `  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) } ) ,  ( `' E `  { ( P `  x ) ,  ( P ` 
0 ) } ) ) )
21a1i 11 . 2  |-  ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  ->  F  =  ( x  e.  ( 0..^ ( (
# `  P )  -  1 ) ) 
|->  if ( x  < 
( ( # `  P
)  -  2 ) ,  ( `' E `  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) } ) ,  ( `' E `  { ( P `  x ) ,  ( P ` 
0 ) } ) ) ) )
3 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  /\  x  =  ( ( # `  P )  -  2 ) )  ->  x  =  ( ( # `  P )  -  2 ) )
4 nn0z 11400 . . . . . . . . . . . . . 14  |-  ( (
# `  P )  e.  NN0  ->  ( # `  P
)  e.  ZZ )
5 2z 11409 . . . . . . . . . . . . . 14  |-  2  e.  ZZ
64, 5jctir 561 . . . . . . . . . . . . 13  |-  ( (
# `  P )  e.  NN0  ->  ( ( # `
 P )  e.  ZZ  /\  2  e.  ZZ ) )
7 zsubcl 11419 . . . . . . . . . . . . 13  |-  ( ( ( # `  P
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( # `  P
)  -  2 )  e.  ZZ )
86, 7syl 17 . . . . . . . . . . . 12  |-  ( (
# `  P )  e.  NN0  ->  ( ( # `
 P )  - 
2 )  e.  ZZ )
98adantr 481 . . . . . . . . . . 11  |-  ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  ->  (
( # `  P )  -  2 )  e.  ZZ )
109adantr 481 . . . . . . . . . 10  |-  ( ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  /\  x  =  ( ( # `  P )  -  2 ) )  ->  (
( # `  P )  -  2 )  e.  ZZ )
113, 10eqeltrd 2701 . . . . . . . . 9  |-  ( ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  /\  x  =  ( ( # `  P )  -  2 ) )  ->  x  e.  ZZ )
1211ex 450 . . . . . . . 8  |-  ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  ->  (
x  =  ( (
# `  P )  -  2 )  ->  x  e.  ZZ )
)
13 zre 11381 . . . . . . . . . . 11  |-  ( x  e.  ZZ  ->  x  e.  RR )
14 nn0re 11301 . . . . . . . . . . . . 13  |-  ( (
# `  P )  e.  NN0  ->  ( # `  P
)  e.  RR )
15 2re 11090 . . . . . . . . . . . . . 14  |-  2  e.  RR
1615a1i 11 . . . . . . . . . . . . 13  |-  ( (
# `  P )  e.  NN0  ->  2  e.  RR )
1714, 16resubcld 10458 . . . . . . . . . . . 12  |-  ( (
# `  P )  e.  NN0  ->  ( ( # `
 P )  - 
2 )  e.  RR )
1817adantr 481 . . . . . . . . . . 11  |-  ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  ->  (
( # `  P )  -  2 )  e.  RR )
19 lttri3 10121 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  ( ( # `  P
)  -  2 )  e.  RR )  -> 
( x  =  ( ( # `  P
)  -  2 )  <-> 
( -.  x  < 
( ( # `  P
)  -  2 )  /\  -.  ( (
# `  P )  -  2 )  < 
x ) ) )
2013, 18, 19syl2anr 495 . . . . . . . . . 10  |-  ( ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  /\  x  e.  ZZ )  ->  (
x  =  ( (
# `  P )  -  2 )  <->  ( -.  x  <  ( ( # `  P )  -  2 )  /\  -.  (
( # `  P )  -  2 )  < 
x ) ) )
21 simpl 473 . . . . . . . . . 10  |-  ( ( -.  x  <  (
( # `  P )  -  2 )  /\  -.  ( ( # `  P
)  -  2 )  <  x )  ->  -.  x  <  ( (
# `  P )  -  2 ) )
2220, 21syl6bi 243 . . . . . . . . 9  |-  ( ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  /\  x  e.  ZZ )  ->  (
x  =  ( (
# `  P )  -  2 )  ->  -.  x  <  ( (
# `  P )  -  2 ) ) )
2322ex 450 . . . . . . . 8  |-  ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  ->  (
x  e.  ZZ  ->  ( x  =  ( (
# `  P )  -  2 )  ->  -.  x  <  ( (
# `  P )  -  2 ) ) ) )
2412, 23syld 47 . . . . . . 7  |-  ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  ->  (
x  =  ( (
# `  P )  -  2 )  -> 
( x  =  ( ( # `  P
)  -  2 )  ->  -.  x  <  ( ( # `  P
)  -  2 ) ) ) )
2524com13 88 . . . . . 6  |-  ( x  =  ( ( # `  P )  -  2 )  ->  ( x  =  ( ( # `  P )  -  2 )  ->  ( (
( # `  P )  e.  NN0  /\  2  <_  ( # `  P
) )  ->  -.  x  <  ( ( # `  P )  -  2 ) ) ) )
2625pm2.43i 52 . . . . 5  |-  ( x  =  ( ( # `  P )  -  2 )  ->  ( (
( # `  P )  e.  NN0  /\  2  <_  ( # `  P
) )  ->  -.  x  <  ( ( # `  P )  -  2 ) ) )
2726impcom 446 . . . 4  |-  ( ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  /\  x  =  ( ( # `  P )  -  2 ) )  ->  -.  x  <  ( ( # `  P )  -  2 ) )
2827iffalsed 4097 . . 3  |-  ( ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  /\  x  =  ( ( # `  P )  -  2 ) )  ->  if ( x  <  ( (
# `  P )  -  2 ) ,  ( `' E `  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) } ) ,  ( `' E `  { ( P `  x ) ,  ( P ` 
0 ) } ) )  =  ( `' E `  { ( P `  x ) ,  ( P ` 
0 ) } ) )
29 fveq2 6191 . . . . . 6  |-  ( x  =  ( ( # `  P )  -  2 )  ->  ( P `  x )  =  ( P `  ( (
# `  P )  -  2 ) ) )
3029adantl 482 . . . . 5  |-  ( ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  /\  x  =  ( ( # `  P )  -  2 ) )  ->  ( P `  x )  =  ( P `  ( ( # `  P
)  -  2 ) ) )
3130preq1d 4274 . . . 4  |-  ( ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  /\  x  =  ( ( # `  P )  -  2 ) )  ->  { ( P `  x ) ,  ( P ` 
0 ) }  =  { ( P `  ( ( # `  P
)  -  2 ) ) ,  ( P `
 0 ) } )
3231fveq2d 6195 . . 3  |-  ( ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  /\  x  =  ( ( # `  P )  -  2 ) )  ->  ( `' E `  { ( P `  x ) ,  ( P ` 
0 ) } )  =  ( `' E `  { ( P `  ( ( # `  P
)  -  2 ) ) ,  ( P `
 0 ) } ) )
3328, 32eqtrd 2656 . 2  |-  ( ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  /\  x  =  ( ( # `  P )  -  2 ) )  ->  if ( x  <  ( (
# `  P )  -  2 ) ,  ( `' E `  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) } ) ,  ( `' E `  { ( P `  x ) ,  ( P ` 
0 ) } ) )  =  ( `' E `  { ( P `  ( (
# `  P )  -  2 ) ) ,  ( P ` 
0 ) } ) )
346adantr 481 . . . . 5  |-  ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  ->  (
( # `  P )  e.  ZZ  /\  2  e.  ZZ ) )
3534, 7syl 17 . . . 4  |-  ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  ->  (
( # `  P )  -  2 )  e.  ZZ )
3614, 16subge0d 10617 . . . . 5  |-  ( (
# `  P )  e.  NN0  ->  ( 0  <_  ( ( # `  P )  -  2 )  <->  2  <_  ( # `
 P ) ) )
3736biimpar 502 . . . 4  |-  ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  ->  0  <_  ( ( # `  P
)  -  2 ) )
38 elnn0z 11390 . . . 4  |-  ( ( ( # `  P
)  -  2 )  e.  NN0  <->  ( ( (
# `  P )  -  2 )  e.  ZZ  /\  0  <_ 
( ( # `  P
)  -  2 ) ) )
3935, 37, 38sylanbrc 698 . . 3  |-  ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  ->  (
( # `  P )  -  2 )  e. 
NN0 )
40 nn0ge2m1nn 11360 . . 3  |-  ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  ->  (
( # `  P )  -  1 )  e.  NN )
41 1red 10055 . . . 4  |-  ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  ->  1  e.  RR )
4215a1i 11 . . . 4  |-  ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  ->  2  e.  RR )
4314adantr 481 . . . 4  |-  ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  ->  ( # `
 P )  e.  RR )
44 1lt2 11194 . . . . 5  |-  1  <  2
4544a1i 11 . . . 4  |-  ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  ->  1  <  2 )
4641, 42, 43, 45ltsub2dd 10640 . . 3  |-  ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  ->  (
( # `  P )  -  2 )  < 
( ( # `  P
)  -  1 ) )
47 elfzo0 12508 . . 3  |-  ( ( ( # `  P
)  -  2 )  e.  ( 0..^ ( ( # `  P
)  -  1 ) )  <->  ( ( (
# `  P )  -  2 )  e. 
NN0  /\  ( ( # `
 P )  - 
1 )  e.  NN  /\  ( ( # `  P
)  -  2 )  <  ( ( # `  P )  -  1 ) ) )
4839, 40, 46, 47syl3anbrc 1246 . 2  |-  ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  ->  (
( # `  P )  -  2 )  e.  ( 0..^ ( (
# `  P )  -  1 ) ) )
49 fvexd 6203 . 2  |-  ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  ->  ( `' E `  { ( P `  ( (
# `  P )  -  2 ) ) ,  ( P ` 
0 ) } )  e.  _V )
502, 33, 48, 49fvmptd 6288 1  |-  ( ( ( # `  P
)  e.  NN0  /\  2  <_  ( # `  P
) )  ->  ( F `  ( ( # `
 P )  - 
2 ) )  =  ( `' E `  { ( P `  ( ( # `  P
)  -  2 ) ) ,  ( P `
 0 ) } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   ifcif 4086   {cpr 4179   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377  ..^cfzo 12465   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466
This theorem is referenced by:  clwlkclwwlklem2a4  26898
  Copyright terms: Public domain W3C validator