MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwisshclwws Structured version   Visualization version   Unicode version

Theorem clwwisshclwws 26928
Description: Cyclically shifting a closed walk as word results in a closed walk as word (in an undirected graph). (Contributed by Alexander van der Vekens, 24-Mar-2018.) (Revised by AV, 28-Apr-2021.)
Assertion
Ref Expression
clwwisshclwws  |-  ( ( W  e.  (ClWWalks `  G
)  /\  N  e.  ( 0..^ ( # `  W
) ) )  -> 
( W cyclShift  N )  e.  (ClWWalks `  G )
)

Proof of Theorem clwwisshclwws
Dummy variables  i 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . 6  |-  (Vtx `  G )  =  (Vtx
`  G )
21clwwlkbp 26883 . . . . 5  |-  ( W  e.  (ClWWalks `  G
)  ->  ( G  e.  _V  /\  W  e. Word 
(Vtx `  G )  /\  W  =/=  (/) ) )
3 cshw0 13540 . . . . . . . 8  |-  ( W  e. Word  (Vtx `  G
)  ->  ( W cyclShift  0 )  =  W )
433ad2ant2 1083 . . . . . . 7  |-  ( ( G  e.  _V  /\  W  e. Word  (Vtx `  G
)  /\  W  =/=  (/) )  ->  ( W cyclShift  0 )  =  W )
54eleq1d 2686 . . . . . 6  |-  ( ( G  e.  _V  /\  W  e. Word  (Vtx `  G
)  /\  W  =/=  (/) )  ->  ( ( W cyclShift  0 )  e.  (ClWWalks `  G )  <->  W  e.  (ClWWalks `  G ) ) )
65biimprd 238 . . . . 5  |-  ( ( G  e.  _V  /\  W  e. Word  (Vtx `  G
)  /\  W  =/=  (/) )  ->  ( W  e.  (ClWWalks `  G )  ->  ( W cyclShift  0 )  e.  (ClWWalks `  G
) ) )
72, 6mpcom 38 . . . 4  |-  ( W  e.  (ClWWalks `  G
)  ->  ( W cyclShift  0 )  e.  (ClWWalks `  G
) )
8 oveq2 6658 . . . . 5  |-  ( N  =  0  ->  ( W cyclShift  N )  =  ( W cyclShift  0 ) )
98eleq1d 2686 . . . 4  |-  ( N  =  0  ->  (
( W cyclShift  N )  e.  (ClWWalks `  G )  <->  ( W cyclShift  0 )  e.  (ClWWalks `  G )
) )
107, 9syl5ibrcom 237 . . 3  |-  ( W  e.  (ClWWalks `  G
)  ->  ( N  =  0  ->  ( W cyclShift  N )  e.  (ClWWalks `  G ) ) )
1110adantr 481 . 2  |-  ( ( W  e.  (ClWWalks `  G
)  /\  N  e.  ( 0..^ ( # `  W
) ) )  -> 
( N  =  0  ->  ( W cyclShift  N )  e.  (ClWWalks `  G
) ) )
12 fzo1fzo0n0 12518 . . . . . 6  |-  ( N  e.  ( 1..^ (
# `  W )
)  <->  ( N  e.  ( 0..^ ( # `  W ) )  /\  N  =/=  0 ) )
13 cshwcl 13544 . . . . . . . . . . . . 13  |-  ( W  e. Word  (Vtx `  G
)  ->  ( W cyclShift  N )  e. Word  (Vtx `  G ) )
1413adantr 481 . . . . . . . . . . . 12  |-  ( ( W  e. Word  (Vtx `  G )  /\  W  =/=  (/) )  ->  ( W cyclShift  N )  e. Word  (Vtx `  G ) )
15143ad2ant1 1082 . . . . . . . . . . 11  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  W  =/=  (/) )  /\  A. i  e.  ( 0..^ ( ( # `  W
)  -  1 ) ) { ( W `
 i ) ,  ( W `  (
i  +  1 ) ) }  e.  (Edg
`  G )  /\  { ( lastS  `  W ) ,  ( W ` 
0 ) }  e.  (Edg `  G ) )  ->  ( W cyclShift  N )  e. Word  (Vtx `  G
) )
1615adantr 481 . . . . . . . . . 10  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  W  =/=  (/) )  /\  A. i  e.  ( 0..^ ( ( # `  W
)  -  1 ) ) { ( W `
 i ) ,  ( W `  (
i  +  1 ) ) }  e.  (Edg
`  G )  /\  { ( lastS  `  W ) ,  ( W ` 
0 ) }  e.  (Edg `  G ) )  /\  N  e.  ( 1..^ ( # `  W
) ) )  -> 
( W cyclShift  N )  e. Word 
(Vtx `  G )
)
17 simpl 473 . . . . . . . . . . . . . 14  |-  ( ( W  e. Word  (Vtx `  G )  /\  W  =/=  (/) )  ->  W  e. Word  (Vtx `  G )
)
18 elfzoelz 12470 . . . . . . . . . . . . . 14  |-  ( N  e.  ( 1..^ (
# `  W )
)  ->  N  e.  ZZ )
19 cshwlen 13545 . . . . . . . . . . . . . 14  |-  ( ( W  e. Word  (Vtx `  G )  /\  N  e.  ZZ )  ->  ( # `
 ( W cyclShift  N ) )  =  ( # `  W ) )
2017, 18, 19syl2an 494 . . . . . . . . . . . . 13  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  W  =/=  (/) )  /\  N  e.  ( 1..^ ( # `  W ) ) )  ->  ( # `  ( W cyclShift  N ) )  =  ( # `  W
) )
21 hasheq0 13154 . . . . . . . . . . . . . . . . 17  |-  ( W  e. Word  (Vtx `  G
)  ->  ( ( # `
 W )  =  0  <->  W  =  (/) ) )
2221bicomd 213 . . . . . . . . . . . . . . . 16  |-  ( W  e. Word  (Vtx `  G
)  ->  ( W  =  (/)  <->  ( # `  W
)  =  0 ) )
2322necon3bid 2838 . . . . . . . . . . . . . . 15  |-  ( W  e. Word  (Vtx `  G
)  ->  ( W  =/=  (/)  <->  ( # `  W
)  =/=  0 ) )
2423biimpa 501 . . . . . . . . . . . . . 14  |-  ( ( W  e. Word  (Vtx `  G )  /\  W  =/=  (/) )  ->  ( # `
 W )  =/=  0 )
2524adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  W  =/=  (/) )  /\  N  e.  ( 1..^ ( # `  W ) ) )  ->  ( # `  W
)  =/=  0 )
2620, 25eqnetrd 2861 . . . . . . . . . . . 12  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  W  =/=  (/) )  /\  N  e.  ( 1..^ ( # `  W ) ) )  ->  ( # `  ( W cyclShift  N ) )  =/=  0 )
2714adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  W  =/=  (/) )  /\  N  e.  ( 1..^ ( # `  W ) ) )  ->  ( W cyclShift  N )  e. Word  (Vtx `  G
) )
28 hasheq0 13154 . . . . . . . . . . . . . 14  |-  ( ( W cyclShift  N )  e. Word  (Vtx `  G )  ->  (
( # `  ( W cyclShift  N ) )  =  0  <->  ( W cyclShift  N )  =  (/) ) )
2927, 28syl 17 . . . . . . . . . . . . 13  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  W  =/=  (/) )  /\  N  e.  ( 1..^ ( # `  W ) ) )  ->  ( ( # `  ( W cyclShift  N )
)  =  0  <->  ( W cyclShift  N )  =  (/) ) )
3029necon3bid 2838 . . . . . . . . . . . 12  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  W  =/=  (/) )  /\  N  e.  ( 1..^ ( # `  W ) ) )  ->  ( ( # `  ( W cyclShift  N )
)  =/=  0  <->  ( W cyclShift  N )  =/=  (/) ) )
3126, 30mpbid 222 . . . . . . . . . . 11  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  W  =/=  (/) )  /\  N  e.  ( 1..^ ( # `  W ) ) )  ->  ( W cyclShift  N )  =/=  (/) )
32313ad2antl1 1223 . . . . . . . . . 10  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  W  =/=  (/) )  /\  A. i  e.  ( 0..^ ( ( # `  W
)  -  1 ) ) { ( W `
 i ) ,  ( W `  (
i  +  1 ) ) }  e.  (Edg
`  G )  /\  { ( lastS  `  W ) ,  ( W ` 
0 ) }  e.  (Edg `  G ) )  /\  N  e.  ( 1..^ ( # `  W
) ) )  -> 
( W cyclShift  N )  =/=  (/) )
3316, 32jca 554 . . . . . . . . 9  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  W  =/=  (/) )  /\  A. i  e.  ( 0..^ ( ( # `  W
)  -  1 ) ) { ( W `
 i ) ,  ( W `  (
i  +  1 ) ) }  e.  (Edg
`  G )  /\  { ( lastS  `  W ) ,  ( W ` 
0 ) }  e.  (Edg `  G ) )  /\  N  e.  ( 1..^ ( # `  W
) ) )  -> 
( ( W cyclShift  N )  e. Word  (Vtx `  G
)  /\  ( W cyclShift  N )  =/=  (/) ) )
34173ad2ant1 1082 . . . . . . . . . . 11  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  W  =/=  (/) )  /\  A. i  e.  ( 0..^ ( ( # `  W
)  -  1 ) ) { ( W `
 i ) ,  ( W `  (
i  +  1 ) ) }  e.  (Edg
`  G )  /\  { ( lastS  `  W ) ,  ( W ` 
0 ) }  e.  (Edg `  G ) )  ->  W  e. Word  (Vtx `  G ) )
3534anim1i 592 . . . . . . . . . 10  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  W  =/=  (/) )  /\  A. i  e.  ( 0..^ ( ( # `  W
)  -  1 ) ) { ( W `
 i ) ,  ( W `  (
i  +  1 ) ) }  e.  (Edg
`  G )  /\  { ( lastS  `  W ) ,  ( W ` 
0 ) }  e.  (Edg `  G ) )  /\  N  e.  ( 1..^ ( # `  W
) ) )  -> 
( W  e. Word  (Vtx `  G )  /\  N  e.  ( 1..^ ( # `  W ) ) ) )
36 3simpc 1060 . . . . . . . . . . 11  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  W  =/=  (/) )  /\  A. i  e.  ( 0..^ ( ( # `  W
)  -  1 ) ) { ( W `
 i ) ,  ( W `  (
i  +  1 ) ) }  e.  (Edg
`  G )  /\  { ( lastS  `  W ) ,  ( W ` 
0 ) }  e.  (Edg `  G ) )  ->  ( A. i  e.  ( 0..^ ( (
# `  W )  -  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  {
( lastS  `  W ) ,  ( W `  0
) }  e.  (Edg
`  G ) ) )
3736adantr 481 . . . . . . . . . 10  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  W  =/=  (/) )  /\  A. i  e.  ( 0..^ ( ( # `  W
)  -  1 ) ) { ( W `
 i ) ,  ( W `  (
i  +  1 ) ) }  e.  (Edg
`  G )  /\  { ( lastS  `  W ) ,  ( W ` 
0 ) }  e.  (Edg `  G ) )  /\  N  e.  ( 1..^ ( # `  W
) ) )  -> 
( A. i  e.  ( 0..^ ( (
# `  W )  -  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  {
( lastS  `  W ) ,  ( W `  0
) }  e.  (Edg
`  G ) ) )
38 clwwisshclwwslem 26927 . . . . . . . . . 10  |-  ( ( W  e. Word  (Vtx `  G )  /\  N  e.  ( 1..^ ( # `  W ) ) )  ->  ( ( A. i  e.  ( 0..^ ( ( # `  W
)  -  1 ) ) { ( W `
 i ) ,  ( W `  (
i  +  1 ) ) }  e.  (Edg
`  G )  /\  { ( lastS  `  W ) ,  ( W ` 
0 ) }  e.  (Edg `  G ) )  ->  A. j  e.  ( 0..^ ( ( # `  ( W cyclShift  N )
)  -  1 ) ) { ( ( W cyclShift  N ) `  j
) ,  ( ( W cyclShift  N ) `  (
j  +  1 ) ) }  e.  (Edg
`  G ) ) )
3935, 37, 38sylc 65 . . . . . . . . 9  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  W  =/=  (/) )  /\  A. i  e.  ( 0..^ ( ( # `  W
)  -  1 ) ) { ( W `
 i ) ,  ( W `  (
i  +  1 ) ) }  e.  (Edg
`  G )  /\  { ( lastS  `  W ) ,  ( W ` 
0 ) }  e.  (Edg `  G ) )  /\  N  e.  ( 1..^ ( # `  W
) ) )  ->  A. j  e.  (
0..^ ( ( # `  ( W cyclShift  N )
)  -  1 ) ) { ( ( W cyclShift  N ) `  j
) ,  ( ( W cyclShift  N ) `  (
j  +  1 ) ) }  e.  (Edg
`  G ) )
40 elfzofz 12485 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( 1..^ (
# `  W )
)  ->  N  e.  ( 1 ... ( # `
 W ) ) )
41 lswcshw 13561 . . . . . . . . . . . . . . . 16  |-  ( ( W  e. Word  (Vtx `  G )  /\  N  e.  ( 1 ... ( # `
 W ) ) )  ->  ( lastS  `  ( W cyclShift  N ) )  =  ( W `  ( N  -  1 ) ) )
4240, 41sylan2 491 . . . . . . . . . . . . . . 15  |-  ( ( W  e. Word  (Vtx `  G )  /\  N  e.  ( 1..^ ( # `  W ) ) )  ->  ( lastS  `  ( W cyclShift  N ) )  =  ( W `  ( N  -  1 ) ) )
43 fzo0ss1 12498 . . . . . . . . . . . . . . . . 17  |-  ( 1..^ ( # `  W
) )  C_  (
0..^ ( # `  W
) )
4443sseli 3599 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( 1..^ (
# `  W )
)  ->  N  e.  ( 0..^ ( # `  W
) ) )
45 cshwidx0 13552 . . . . . . . . . . . . . . . 16  |-  ( ( W  e. Word  (Vtx `  G )  /\  N  e.  ( 0..^ ( # `  W ) ) )  ->  ( ( W cyclShift  N ) `  0
)  =  ( W `
 N ) )
4644, 45sylan2 491 . . . . . . . . . . . . . . 15  |-  ( ( W  e. Word  (Vtx `  G )  /\  N  e.  ( 1..^ ( # `  W ) ) )  ->  ( ( W cyclShift  N ) `  0
)  =  ( W `
 N ) )
4742, 46preq12d 4276 . . . . . . . . . . . . . 14  |-  ( ( W  e. Word  (Vtx `  G )  /\  N  e.  ( 1..^ ( # `  W ) ) )  ->  { ( lastS  `  ( W cyclShift  N ) ) ,  ( ( W cyclShift  N ) `
 0 ) }  =  { ( W `
 ( N  - 
1 ) ) ,  ( W `  N
) } )
4847ex 450 . . . . . . . . . . . . 13  |-  ( W  e. Word  (Vtx `  G
)  ->  ( N  e.  ( 1..^ ( # `  W ) )  ->  { ( lastS  `  ( W cyclShift  N ) ) ,  ( ( W cyclShift  N ) `
 0 ) }  =  { ( W `
 ( N  - 
1 ) ) ,  ( W `  N
) } ) )
4948adantr 481 . . . . . . . . . . . 12  |-  ( ( W  e. Word  (Vtx `  G )  /\  W  =/=  (/) )  ->  ( N  e.  ( 1..^ ( # `  W
) )  ->  { ( lastS  `  ( W cyclShift  N )
) ,  ( ( W cyclShift  N ) `  0
) }  =  {
( W `  ( N  -  1 ) ) ,  ( W `
 N ) } ) )
50493ad2ant1 1082 . . . . . . . . . . 11  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  W  =/=  (/) )  /\  A. i  e.  ( 0..^ ( ( # `  W
)  -  1 ) ) { ( W `
 i ) ,  ( W `  (
i  +  1 ) ) }  e.  (Edg
`  G )  /\  { ( lastS  `  W ) ,  ( W ` 
0 ) }  e.  (Edg `  G ) )  ->  ( N  e.  ( 1..^ ( # `  W ) )  ->  { ( lastS  `  ( W cyclShift  N ) ) ,  ( ( W cyclShift  N ) `
 0 ) }  =  { ( W `
 ( N  - 
1 ) ) ,  ( W `  N
) } ) )
5150imp 445 . . . . . . . . . 10  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  W  =/=  (/) )  /\  A. i  e.  ( 0..^ ( ( # `  W
)  -  1 ) ) { ( W `
 i ) ,  ( W `  (
i  +  1 ) ) }  e.  (Edg
`  G )  /\  { ( lastS  `  W ) ,  ( W ` 
0 ) }  e.  (Edg `  G ) )  /\  N  e.  ( 1..^ ( # `  W
) ) )  ->  { ( lastS  `  ( W cyclShift  N ) ) ,  ( ( W cyclShift  N ) `
 0 ) }  =  { ( W `
 ( N  - 
1 ) ) ,  ( W `  N
) } )
52 elfzo1elm1fzo0 12569 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ( 1..^ (
# `  W )
)  ->  ( N  -  1 )  e.  ( 0..^ ( (
# `  W )  -  1 ) ) )
5352adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( W  e. Word  (Vtx `  G )  /\  N  e.  ( 1..^ ( # `  W ) ) )  ->  ( N  - 
1 )  e.  ( 0..^ ( ( # `  W )  -  1 ) ) )
54 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( i  =  ( N  - 
1 )  ->  ( W `  i )  =  ( W `  ( N  -  1
) ) )
5554adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  N  e.  ( 1..^ ( # `  W ) ) )  /\  i  =  ( N  -  1 ) )  ->  ( W `  i )  =  ( W `  ( N  -  1 ) ) )
56 oveq1 6657 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  =  ( N  - 
1 )  ->  (
i  +  1 )  =  ( ( N  -  1 )  +  1 ) )
5756fveq2d 6195 . . . . . . . . . . . . . . . . . . 19  |-  ( i  =  ( N  - 
1 )  ->  ( W `  ( i  +  1 ) )  =  ( W `  ( ( N  - 
1 )  +  1 ) ) )
5818zcnd 11483 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  ( 1..^ (
# `  W )
)  ->  N  e.  CC )
5958adantl 482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( W  e. Word  (Vtx `  G )  /\  N  e.  ( 1..^ ( # `  W ) ) )  ->  N  e.  CC )
60 1cnd 10056 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( W  e. Word  (Vtx `  G )  /\  N  e.  ( 1..^ ( # `  W ) ) )  ->  1  e.  CC )
6159, 60npcand 10396 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( W  e. Word  (Vtx `  G )  /\  N  e.  ( 1..^ ( # `  W ) ) )  ->  ( ( N  -  1 )  +  1 )  =  N )
6261fveq2d 6195 . . . . . . . . . . . . . . . . . . 19  |-  ( ( W  e. Word  (Vtx `  G )  /\  N  e.  ( 1..^ ( # `  W ) ) )  ->  ( W `  ( ( N  - 
1 )  +  1 ) )  =  ( W `  N ) )
6357, 62sylan9eqr 2678 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  N  e.  ( 1..^ ( # `  W ) ) )  /\  i  =  ( N  -  1 ) )  ->  ( W `  ( i  +  1 ) )  =  ( W `  N ) )
6455, 63preq12d 4276 . . . . . . . . . . . . . . . . 17  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  N  e.  ( 1..^ ( # `  W ) ) )  /\  i  =  ( N  -  1 ) )  ->  { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  =  { ( W `  ( N  -  1
) ) ,  ( W `  N ) } )
6564eleq1d 2686 . . . . . . . . . . . . . . . 16  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  N  e.  ( 1..^ ( # `  W ) ) )  /\  i  =  ( N  -  1 ) )  ->  ( {
( W `  i
) ,  ( W `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  <->  { ( W `  ( N  -  1
) ) ,  ( W `  N ) }  e.  (Edg `  G ) ) )
6653, 65rspcdv 3312 . . . . . . . . . . . . . . 15  |-  ( ( W  e. Word  (Vtx `  G )  /\  N  e.  ( 1..^ ( # `  W ) ) )  ->  ( A. i  e.  ( 0..^ ( (
# `  W )  -  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G )  ->  { ( W `  ( N  -  1 ) ) ,  ( W `  N ) }  e.  (Edg `  G ) ) )
6766a1d 25 . . . . . . . . . . . . . 14  |-  ( ( W  e. Word  (Vtx `  G )  /\  N  e.  ( 1..^ ( # `  W ) ) )  ->  ( { ( lastS  `  W ) ,  ( W `  0 ) }  e.  (Edg `  G )  ->  ( A. i  e.  (
0..^ ( ( # `  W )  -  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G )  ->  { ( W `  ( N  -  1
) ) ,  ( W `  N ) }  e.  (Edg `  G ) ) ) )
6867ex 450 . . . . . . . . . . . . 13  |-  ( W  e. Word  (Vtx `  G
)  ->  ( N  e.  ( 1..^ ( # `  W ) )  -> 
( { ( lastS  `  W
) ,  ( W `
 0 ) }  e.  (Edg `  G
)  ->  ( A. i  e.  ( 0..^ ( ( # `  W
)  -  1 ) ) { ( W `
 i ) ,  ( W `  (
i  +  1 ) ) }  e.  (Edg
`  G )  ->  { ( W `  ( N  -  1
) ) ,  ( W `  N ) }  e.  (Edg `  G ) ) ) ) )
6968adantr 481 . . . . . . . . . . . 12  |-  ( ( W  e. Word  (Vtx `  G )  /\  W  =/=  (/) )  ->  ( N  e.  ( 1..^ ( # `  W
) )  ->  ( { ( lastS  `  W ) ,  ( W ` 
0 ) }  e.  (Edg `  G )  -> 
( A. i  e.  ( 0..^ ( (
# `  W )  -  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G )  ->  { ( W `  ( N  -  1 ) ) ,  ( W `  N ) }  e.  (Edg `  G ) ) ) ) )
7069com24 95 . . . . . . . . . . 11  |-  ( ( W  e. Word  (Vtx `  G )  /\  W  =/=  (/) )  ->  ( A. i  e.  (
0..^ ( ( # `  W )  -  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G )  -> 
( { ( lastS  `  W
) ,  ( W `
 0 ) }  e.  (Edg `  G
)  ->  ( N  e.  ( 1..^ ( # `  W ) )  ->  { ( W `  ( N  -  1
) ) ,  ( W `  N ) }  e.  (Edg `  G ) ) ) ) )
71703imp1 1280 . . . . . . . . . 10  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  W  =/=  (/) )  /\  A. i  e.  ( 0..^ ( ( # `  W
)  -  1 ) ) { ( W `
 i ) ,  ( W `  (
i  +  1 ) ) }  e.  (Edg
`  G )  /\  { ( lastS  `  W ) ,  ( W ` 
0 ) }  e.  (Edg `  G ) )  /\  N  e.  ( 1..^ ( # `  W
) ) )  ->  { ( W `  ( N  -  1
) ) ,  ( W `  N ) }  e.  (Edg `  G ) )
7251, 71eqeltrd 2701 . . . . . . . . 9  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  W  =/=  (/) )  /\  A. i  e.  ( 0..^ ( ( # `  W
)  -  1 ) ) { ( W `
 i ) ,  ( W `  (
i  +  1 ) ) }  e.  (Edg
`  G )  /\  { ( lastS  `  W ) ,  ( W ` 
0 ) }  e.  (Edg `  G ) )  /\  N  e.  ( 1..^ ( # `  W
) ) )  ->  { ( lastS  `  ( W cyclShift  N ) ) ,  ( ( W cyclShift  N ) `
 0 ) }  e.  (Edg `  G
) )
7333, 39, 723jca 1242 . . . . . . . 8  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  W  =/=  (/) )  /\  A. i  e.  ( 0..^ ( ( # `  W
)  -  1 ) ) { ( W `
 i ) ,  ( W `  (
i  +  1 ) ) }  e.  (Edg
`  G )  /\  { ( lastS  `  W ) ,  ( W ` 
0 ) }  e.  (Edg `  G ) )  /\  N  e.  ( 1..^ ( # `  W
) ) )  -> 
( ( ( W cyclShift  N )  e. Word  (Vtx `  G )  /\  ( W cyclShift  N )  =/=  (/) )  /\  A. j  e.  ( 0..^ ( ( # `  ( W cyclShift  N ) )  - 
1 ) ) { ( ( W cyclShift  N ) `
 j ) ,  ( ( W cyclShift  N ) `
 ( j  +  1 ) ) }  e.  (Edg `  G
)  /\  { ( lastS  `  ( W cyclShift  N )
) ,  ( ( W cyclShift  N ) `  0
) }  e.  (Edg
`  G ) ) )
7473expcom 451 . . . . . . 7  |-  ( N  e.  ( 1..^ (
# `  W )
)  ->  ( (
( W  e. Word  (Vtx `  G )  /\  W  =/=  (/) )  /\  A. i  e.  ( 0..^ ( ( # `  W
)  -  1 ) ) { ( W `
 i ) ,  ( W `  (
i  +  1 ) ) }  e.  (Edg
`  G )  /\  { ( lastS  `  W ) ,  ( W ` 
0 ) }  e.  (Edg `  G ) )  ->  ( ( ( W cyclShift  N )  e. Word  (Vtx `  G )  /\  ( W cyclShift  N )  =/=  (/) )  /\  A. j  e.  ( 0..^ ( ( # `  ( W cyclShift  N ) )  - 
1 ) ) { ( ( W cyclShift  N ) `
 j ) ,  ( ( W cyclShift  N ) `
 ( j  +  1 ) ) }  e.  (Edg `  G
)  /\  { ( lastS  `  ( W cyclShift  N )
) ,  ( ( W cyclShift  N ) `  0
) }  e.  (Edg
`  G ) ) ) )
75 eqid 2622 . . . . . . . 8  |-  (Edg `  G )  =  (Edg
`  G )
761, 75isclwwlks 26880 . . . . . . 7  |-  ( W  e.  (ClWWalks `  G
)  <->  ( ( W  e. Word  (Vtx `  G
)  /\  W  =/=  (/) )  /\  A. i  e.  ( 0..^ ( (
# `  W )  -  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  {
( lastS  `  W ) ,  ( W `  0
) }  e.  (Edg
`  G ) ) )
771, 75isclwwlks 26880 . . . . . . 7  |-  ( ( W cyclShift  N )  e.  (ClWWalks `  G )  <->  ( (
( W cyclShift  N )  e. Word 
(Vtx `  G )  /\  ( W cyclShift  N )  =/=  (/) )  /\  A. j  e.  ( 0..^ ( ( # `  ( W cyclShift  N ) )  - 
1 ) ) { ( ( W cyclShift  N ) `
 j ) ,  ( ( W cyclShift  N ) `
 ( j  +  1 ) ) }  e.  (Edg `  G
)  /\  { ( lastS  `  ( W cyclShift  N )
) ,  ( ( W cyclShift  N ) `  0
) }  e.  (Edg
`  G ) ) )
7874, 76, 773imtr4g 285 . . . . . 6  |-  ( N  e.  ( 1..^ (
# `  W )
)  ->  ( W  e.  (ClWWalks `  G )  ->  ( W cyclShift  N )  e.  (ClWWalks `  G )
) )
7912, 78sylbir 225 . . . . 5  |-  ( ( N  e.  ( 0..^ ( # `  W
) )  /\  N  =/=  0 )  ->  ( W  e.  (ClWWalks `  G
)  ->  ( W cyclShift  N )  e.  (ClWWalks `  G
) ) )
8079expcom 451 . . . 4  |-  ( N  =/=  0  ->  ( N  e.  ( 0..^ ( # `  W
) )  ->  ( W  e.  (ClWWalks `  G
)  ->  ( W cyclShift  N )  e.  (ClWWalks `  G
) ) ) )
8180com13 88 . . 3  |-  ( W  e.  (ClWWalks `  G
)  ->  ( N  e.  ( 0..^ ( # `  W ) )  -> 
( N  =/=  0  ->  ( W cyclShift  N )  e.  (ClWWalks `  G )
) ) )
8281imp 445 . 2  |-  ( ( W  e.  (ClWWalks `  G
)  /\  N  e.  ( 0..^ ( # `  W
) ) )  -> 
( N  =/=  0  ->  ( W cyclShift  N )  e.  (ClWWalks `  G )
) )
8311, 82pm2.61dne 2880 1  |-  ( ( W  e.  (ClWWalks `  G
)  /\  N  e.  ( 0..^ ( # `  W
) ) )  -> 
( W cyclShift  N )  e.  (ClWWalks `  G )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200   (/)c0 3915   {cpr 4179   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   ZZcz 11377   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   lastS clsw 13292   cyclShift ccsh 13534  Vtxcvtx 25874  Edgcedg 25939  ClWWalkscclwwlks 26875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-substr 13303  df-csh 13535  df-clwwlks 26877
This theorem is referenced by:  clwwisshclwwsn  26929
  Copyright terms: Public domain W3C validator