MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cssmre Structured version   Visualization version   Unicode version

Theorem cssmre 20037
Description: The closed subspaces of a pre-Hilbert space are a Moore system. Unlike many of our other examples of closure systems, this one is not usually an algebraic closure system df-acs 16249: consider the Hilbert space of sequences  NN --> RR with convergent sum; the subspace of all sequences with finite support is the classic example of a non-closed subspace, but for every finite set of sequences of finite support, there is a finite-dimensional (and hence closed) subspace containing all of the sequences, so if closed subspaces were an algebraic closure system this would violate acsfiel 16315. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
cssmre.v  |-  V  =  ( Base `  W
)
cssmre.c  |-  C  =  ( CSubSp `  W )
Assertion
Ref Expression
cssmre  |-  ( W  e.  PreHil  ->  C  e.  (Moore `  V ) )

Proof of Theorem cssmre
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cssmre.v . . . . . 6  |-  V  =  ( Base `  W
)
2 cssmre.c . . . . . 6  |-  C  =  ( CSubSp `  W )
31, 2cssss 20029 . . . . 5  |-  ( x  e.  C  ->  x  C_  V )
4 selpw 4165 . . . . 5  |-  ( x  e.  ~P V  <->  x  C_  V
)
53, 4sylibr 224 . . . 4  |-  ( x  e.  C  ->  x  e.  ~P V )
65a1i 11 . . 3  |-  ( W  e.  PreHil  ->  ( x  e.  C  ->  x  e.  ~P V ) )
76ssrdv 3609 . 2  |-  ( W  e.  PreHil  ->  C  C_  ~P V )
81, 2css1 20034 . 2  |-  ( W  e.  PreHil  ->  V  e.  C
)
9 intss1 4492 . . . . . . . . . . . 12  |-  ( z  e.  x  ->  |^| x  C_  z )
10 eqid 2622 . . . . . . . . . . . . 13  |-  ( ocv `  W )  =  ( ocv `  W )
1110ocv2ss 20017 . . . . . . . . . . . 12  |-  ( |^| x  C_  z  ->  (
( ocv `  W
) `  z )  C_  ( ( ocv `  W
) `  |^| x ) )
1210ocv2ss 20017 . . . . . . . . . . . 12  |-  ( ( ( ocv `  W
) `  z )  C_  ( ( ocv `  W
) `  |^| x )  ->  ( ( ocv `  W ) `  (
( ocv `  W
) `  |^| x ) )  C_  ( ( ocv `  W ) `  ( ( ocv `  W
) `  z )
) )
139, 11, 123syl 18 . . . . . . . . . . 11  |-  ( z  e.  x  ->  (
( ocv `  W
) `  ( ( ocv `  W ) `  |^| x ) )  C_  ( ( ocv `  W
) `  ( ( ocv `  W ) `  z ) ) )
1413ad2antll 765 . . . . . . . . . 10  |-  ( ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  /\  (
y  e.  ( ( ocv `  W ) `
 ( ( ocv `  W ) `  |^| x ) )  /\  z  e.  x )
)  ->  ( ( ocv `  W ) `  ( ( ocv `  W
) `  |^| x ) )  C_  ( ( ocv `  W ) `  ( ( ocv `  W
) `  z )
) )
15 simprl 794 . . . . . . . . . 10  |-  ( ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  /\  (
y  e.  ( ( ocv `  W ) `
 ( ( ocv `  W ) `  |^| x ) )  /\  z  e.  x )
)  ->  y  e.  ( ( ocv `  W
) `  ( ( ocv `  W ) `  |^| x ) ) )
1614, 15sseldd 3604 . . . . . . . . 9  |-  ( ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  /\  (
y  e.  ( ( ocv `  W ) `
 ( ( ocv `  W ) `  |^| x ) )  /\  z  e.  x )
)  ->  y  e.  ( ( ocv `  W
) `  ( ( ocv `  W ) `  z ) ) )
17 simpl2 1065 . . . . . . . . . . 11  |-  ( ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  /\  (
y  e.  ( ( ocv `  W ) `
 ( ( ocv `  W ) `  |^| x ) )  /\  z  e.  x )
)  ->  x  C_  C
)
18 simprr 796 . . . . . . . . . . 11  |-  ( ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  /\  (
y  e.  ( ( ocv `  W ) `
 ( ( ocv `  W ) `  |^| x ) )  /\  z  e.  x )
)  ->  z  e.  x )
1917, 18sseldd 3604 . . . . . . . . . 10  |-  ( ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  /\  (
y  e.  ( ( ocv `  W ) `
 ( ( ocv `  W ) `  |^| x ) )  /\  z  e.  x )
)  ->  z  e.  C )
2010, 2cssi 20028 . . . . . . . . . 10  |-  ( z  e.  C  ->  z  =  ( ( ocv `  W ) `  (
( ocv `  W
) `  z )
) )
2119, 20syl 17 . . . . . . . . 9  |-  ( ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  /\  (
y  e.  ( ( ocv `  W ) `
 ( ( ocv `  W ) `  |^| x ) )  /\  z  e.  x )
)  ->  z  =  ( ( ocv `  W
) `  ( ( ocv `  W ) `  z ) ) )
2216, 21eleqtrrd 2704 . . . . . . . 8  |-  ( ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  /\  (
y  e.  ( ( ocv `  W ) `
 ( ( ocv `  W ) `  |^| x ) )  /\  z  e.  x )
)  ->  y  e.  z )
2322expr 643 . . . . . . 7  |-  ( ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  /\  y  e.  ( ( ocv `  W
) `  ( ( ocv `  W ) `  |^| x ) ) )  ->  ( z  e.  x  ->  y  e.  z ) )
2423alrimiv 1855 . . . . . 6  |-  ( ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  /\  y  e.  ( ( ocv `  W
) `  ( ( ocv `  W ) `  |^| x ) ) )  ->  A. z ( z  e.  x  ->  y  e.  z ) )
25 vex 3203 . . . . . . 7  |-  y  e. 
_V
2625elint 4481 . . . . . 6  |-  ( y  e.  |^| x  <->  A. z
( z  e.  x  ->  y  e.  z ) )
2724, 26sylibr 224 . . . . 5  |-  ( ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  /\  y  e.  ( ( ocv `  W
) `  ( ( ocv `  W ) `  |^| x ) ) )  ->  y  e.  |^| x )
2827ex 450 . . . 4  |-  ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  ->  ( y  e.  ( ( ocv `  W ) `  (
( ocv `  W
) `  |^| x ) )  ->  y  e.  |^| x ) )
2928ssrdv 3609 . . 3  |-  ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  ->  ( ( ocv `  W ) `
 ( ( ocv `  W ) `  |^| x ) )  C_  |^| x )
30 simp1 1061 . . . 4  |-  ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  ->  W  e. 
PreHil )
31 intssuni 4499 . . . . . 6  |-  ( x  =/=  (/)  ->  |^| x  C_  U. x )
32313ad2ant3 1084 . . . . 5  |-  ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  ->  |^| x  C_ 
U. x )
33 simp2 1062 . . . . . . 7  |-  ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  ->  x  C_  C )
3473ad2ant1 1082 . . . . . . 7  |-  ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  ->  C  C_  ~P V )
3533, 34sstrd 3613 . . . . . 6  |-  ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  ->  x  C_  ~P V )
36 sspwuni 4611 . . . . . 6  |-  ( x 
C_  ~P V  <->  U. x  C_  V )
3735, 36sylib 208 . . . . 5  |-  ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  ->  U. x  C_  V )
3832, 37sstrd 3613 . . . 4  |-  ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  ->  |^| x  C_  V )
391, 2, 10iscss2 20030 . . . 4  |-  ( ( W  e.  PreHil  /\  |^| x  C_  V )  -> 
( |^| x  e.  C  <->  ( ( ocv `  W
) `  ( ( ocv `  W ) `  |^| x ) )  C_  |^| x ) )
4030, 38, 39syl2anc 693 . . 3  |-  ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  ->  ( |^| x  e.  C  <->  ( ( ocv `  W ) `  ( ( ocv `  W
) `  |^| x ) )  C_  |^| x ) )
4129, 40mpbird 247 . 2  |-  ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  ->  |^| x  e.  C )
427, 8, 41ismred 16262 1  |-  ( W  e.  PreHil  ->  C  e.  (Moore `  V ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   |^|cint 4475   ` cfv 5888   Basecbs 15857  Moorecmre 16242   PreHilcphl 19969   ocvcocv 20004   CSubSpccss 20005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-0g 16102  df-mre 16246  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-ghm 17658  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-rnghom 18715  df-staf 18845  df-srng 18846  df-lmod 18865  df-lmhm 19022  df-lvec 19103  df-sra 19172  df-rgmod 19173  df-phl 19971  df-ocv 20007  df-css 20008
This theorem is referenced by:  mrccss  20038
  Copyright terms: Public domain W3C validator