| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cssmre | Structured version Visualization version Unicode version | ||
| Description: The closed subspaces of a
pre-Hilbert space are a Moore system. Unlike
many of our other examples of closure systems, this one is not
usually
an algebraic closure system df-acs 16249: consider the Hilbert space of
sequences |
| Ref | Expression |
|---|---|
| cssmre.v |
|
| cssmre.c |
|
| Ref | Expression |
|---|---|
| cssmre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cssmre.v |
. . . . . 6
| |
| 2 | cssmre.c |
. . . . . 6
| |
| 3 | 1, 2 | cssss 20029 |
. . . . 5
|
| 4 | selpw 4165 |
. . . . 5
| |
| 5 | 3, 4 | sylibr 224 |
. . . 4
|
| 6 | 5 | a1i 11 |
. . 3
|
| 7 | 6 | ssrdv 3609 |
. 2
|
| 8 | 1, 2 | css1 20034 |
. 2
|
| 9 | intss1 4492 |
. . . . . . . . . . . 12
| |
| 10 | eqid 2622 |
. . . . . . . . . . . . 13
| |
| 11 | 10 | ocv2ss 20017 |
. . . . . . . . . . . 12
|
| 12 | 10 | ocv2ss 20017 |
. . . . . . . . . . . 12
|
| 13 | 9, 11, 12 | 3syl 18 |
. . . . . . . . . . 11
|
| 14 | 13 | ad2antll 765 |
. . . . . . . . . 10
|
| 15 | simprl 794 |
. . . . . . . . . 10
| |
| 16 | 14, 15 | sseldd 3604 |
. . . . . . . . 9
|
| 17 | simpl2 1065 |
. . . . . . . . . . 11
| |
| 18 | simprr 796 |
. . . . . . . . . . 11
| |
| 19 | 17, 18 | sseldd 3604 |
. . . . . . . . . 10
|
| 20 | 10, 2 | cssi 20028 |
. . . . . . . . . 10
|
| 21 | 19, 20 | syl 17 |
. . . . . . . . 9
|
| 22 | 16, 21 | eleqtrrd 2704 |
. . . . . . . 8
|
| 23 | 22 | expr 643 |
. . . . . . 7
|
| 24 | 23 | alrimiv 1855 |
. . . . . 6
|
| 25 | vex 3203 |
. . . . . . 7
| |
| 26 | 25 | elint 4481 |
. . . . . 6
|
| 27 | 24, 26 | sylibr 224 |
. . . . 5
|
| 28 | 27 | ex 450 |
. . . 4
|
| 29 | 28 | ssrdv 3609 |
. . 3
|
| 30 | simp1 1061 |
. . . 4
| |
| 31 | intssuni 4499 |
. . . . . 6
| |
| 32 | 31 | 3ad2ant3 1084 |
. . . . 5
|
| 33 | simp2 1062 |
. . . . . . 7
| |
| 34 | 7 | 3ad2ant1 1082 |
. . . . . . 7
|
| 35 | 33, 34 | sstrd 3613 |
. . . . . 6
|
| 36 | sspwuni 4611 |
. . . . . 6
| |
| 37 | 35, 36 | sylib 208 |
. . . . 5
|
| 38 | 32, 37 | sstrd 3613 |
. . . 4
|
| 39 | 1, 2, 10 | iscss2 20030 |
. . . 4
|
| 40 | 30, 38, 39 | syl2anc 693 |
. . 3
|
| 41 | 29, 40 | mpbird 247 |
. 2
|
| 42 | 7, 8, 41 | ismred 16262 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-ip 15959 df-0g 16102 df-mre 16246 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mhm 17335 df-grp 17425 df-ghm 17658 df-mgp 18490 df-ur 18502 df-ring 18549 df-oppr 18623 df-rnghom 18715 df-staf 18845 df-srng 18846 df-lmod 18865 df-lmhm 19022 df-lvec 19103 df-sra 19172 df-rgmod 19173 df-phl 19971 df-ocv 20007 df-css 20008 |
| This theorem is referenced by: mrccss 20038 |
| Copyright terms: Public domain | W3C validator |