MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrinvcl Structured version   Visualization version   Unicode version

Theorem dchrinvcl 24978
Description: Closure of the group inverse operation on Dirichlet characters. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g  |-  G  =  (DChr `  N )
dchrmhm.z  |-  Z  =  (ℤ/n `  N )
dchrmhm.b  |-  D  =  ( Base `  G
)
dchrn0.b  |-  B  =  ( Base `  Z
)
dchrn0.u  |-  U  =  (Unit `  Z )
dchr1cl.o  |-  .1.  =  ( k  e.  B  |->  if ( k  e.  U ,  1 ,  0 ) )
dchrmulid2.t  |-  .x.  =  ( +g  `  G )
dchrmulid2.x  |-  ( ph  ->  X  e.  D )
dchrinvcl.n  |-  K  =  ( k  e.  B  |->  if ( k  e.  U ,  ( 1  /  ( X `  k ) ) ,  0 ) )
Assertion
Ref Expression
dchrinvcl  |-  ( ph  ->  ( K  e.  D  /\  ( K  .x.  X
)  =  .1.  )
)
Distinct variable groups:    B, k    U, k    k, N    ph, k    k, X    k, Z
Allowed substitution hints:    D( k)    .x. ( k)    .1. ( k)    G( k)    K( k)

Proof of Theorem dchrinvcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrinvcl.n . . 3  |-  K  =  ( k  e.  B  |->  if ( k  e.  U ,  ( 1  /  ( X `  k ) ) ,  0 ) )
2 dchrmhm.g . . . 4  |-  G  =  (DChr `  N )
3 dchrmhm.z . . . 4  |-  Z  =  (ℤ/n `  N )
4 dchrn0.b . . . 4  |-  B  =  ( Base `  Z
)
5 dchrn0.u . . . 4  |-  U  =  (Unit `  Z )
6 dchrmulid2.x . . . . 5  |-  ( ph  ->  X  e.  D )
7 dchrmhm.b . . . . . 6  |-  D  =  ( Base `  G
)
82, 7dchrrcl 24965 . . . . 5  |-  ( X  e.  D  ->  N  e.  NN )
96, 8syl 17 . . . 4  |-  ( ph  ->  N  e.  NN )
10 fveq2 6191 . . . . 5  |-  ( k  =  x  ->  ( X `  k )  =  ( X `  x ) )
1110oveq2d 6666 . . . 4  |-  ( k  =  x  ->  (
1  /  ( X `
 k ) )  =  ( 1  / 
( X `  x
) ) )
12 fveq2 6191 . . . . 5  |-  ( k  =  y  ->  ( X `  k )  =  ( X `  y ) )
1312oveq2d 6666 . . . 4  |-  ( k  =  y  ->  (
1  /  ( X `
 k ) )  =  ( 1  / 
( X `  y
) ) )
14 fveq2 6191 . . . . 5  |-  ( k  =  ( x ( .r `  Z ) y )  ->  ( X `  k )  =  ( X `  ( x ( .r
`  Z ) y ) ) )
1514oveq2d 6666 . . . 4  |-  ( k  =  ( x ( .r `  Z ) y )  ->  (
1  /  ( X `
 k ) )  =  ( 1  / 
( X `  (
x ( .r `  Z ) y ) ) ) )
16 fveq2 6191 . . . . 5  |-  ( k  =  ( 1r `  Z )  ->  ( X `  k )  =  ( X `  ( 1r `  Z ) ) )
1716oveq2d 6666 . . . 4  |-  ( k  =  ( 1r `  Z )  ->  (
1  /  ( X `
 k ) )  =  ( 1  / 
( X `  ( 1r `  Z ) ) ) )
182, 3, 7, 4, 6dchrf 24967 . . . . . 6  |-  ( ph  ->  X : B --> CC )
194, 5unitss 18660 . . . . . . 7  |-  U  C_  B
2019sseli 3599 . . . . . 6  |-  ( k  e.  U  ->  k  e.  B )
21 ffvelrn 6357 . . . . . 6  |-  ( ( X : B --> CC  /\  k  e.  B )  ->  ( X `  k
)  e.  CC )
2218, 20, 21syl2an 494 . . . . 5  |-  ( (
ph  /\  k  e.  U )  ->  ( X `  k )  e.  CC )
23 simpr 477 . . . . . 6  |-  ( (
ph  /\  k  e.  U )  ->  k  e.  U )
246adantr 481 . . . . . . 7  |-  ( (
ph  /\  k  e.  U )  ->  X  e.  D )
2520adantl 482 . . . . . . 7  |-  ( (
ph  /\  k  e.  U )  ->  k  e.  B )
262, 3, 7, 4, 5, 24, 25dchrn0 24975 . . . . . 6  |-  ( (
ph  /\  k  e.  U )  ->  (
( X `  k
)  =/=  0  <->  k  e.  U ) )
2723, 26mpbird 247 . . . . 5  |-  ( (
ph  /\  k  e.  U )  ->  ( X `  k )  =/=  0 )
2822, 27reccld 10794 . . . 4  |-  ( (
ph  /\  k  e.  U )  ->  (
1  /  ( X `
 k ) )  e.  CC )
29 1t1e1 11175 . . . . . . . 8  |-  ( 1  x.  1 )  =  1
3029eqcomi 2631 . . . . . . 7  |-  1  =  ( 1  x.  1 )
3130a1i 11 . . . . . 6  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  -> 
1  =  ( 1  x.  1 ) )
322, 3, 7dchrmhm 24966 . . . . . . . 8  |-  D  C_  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )
336adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  ->  X  e.  D )
3432, 33sseldi 3601 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  ->  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )
35 simprl 794 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  ->  x  e.  U )
3619, 35sseldi 3601 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  ->  x  e.  B )
37 simprr 796 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  -> 
y  e.  U )
3819, 37sseldi 3601 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  -> 
y  e.  B )
39 eqid 2622 . . . . . . . . 9  |-  (mulGrp `  Z )  =  (mulGrp `  Z )
4039, 4mgpbas 18495 . . . . . . . 8  |-  B  =  ( Base `  (mulGrp `  Z ) )
41 eqid 2622 . . . . . . . . 9  |-  ( .r
`  Z )  =  ( .r `  Z
)
4239, 41mgpplusg 18493 . . . . . . . 8  |-  ( .r
`  Z )  =  ( +g  `  (mulGrp `  Z ) )
43 eqid 2622 . . . . . . . . 9  |-  (mulGrp ` fld )  =  (mulGrp ` fld )
44 cnfldmul 19752 . . . . . . . . 9  |-  x.  =  ( .r ` fld )
4543, 44mgpplusg 18493 . . . . . . . 8  |-  x.  =  ( +g  `  (mulGrp ` fld )
)
4640, 42, 45mhmlin 17342 . . . . . . 7  |-  ( ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
)  /\  x  e.  B  /\  y  e.  B
)  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) )
4734, 36, 38, 46syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  -> 
( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) )
4831, 47oveq12d 6668 . . . . 5  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  -> 
( 1  /  ( X `  ( x
( .r `  Z
) y ) ) )  =  ( ( 1  x.  1 )  /  ( ( X `
 x )  x.  ( X `  y
) ) ) )
49 1cnd 10056 . . . . . 6  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  -> 
1  e.  CC )
5018adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  ->  X : B --> CC )
5150, 36ffvelrnd 6360 . . . . . 6  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  -> 
( X `  x
)  e.  CC )
5250, 38ffvelrnd 6360 . . . . . 6  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  -> 
( X `  y
)  e.  CC )
532, 3, 7, 4, 5, 33, 36dchrn0 24975 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  -> 
( ( X `  x )  =/=  0  <->  x  e.  U ) )
5435, 53mpbird 247 . . . . . 6  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  -> 
( X `  x
)  =/=  0 )
552, 3, 7, 4, 5, 33, 38dchrn0 24975 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  -> 
( ( X `  y )  =/=  0  <->  y  e.  U ) )
5637, 55mpbird 247 . . . . . 6  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  -> 
( X `  y
)  =/=  0 )
5749, 51, 49, 52, 54, 56divmuldivd 10842 . . . . 5  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  -> 
( ( 1  / 
( X `  x
) )  x.  (
1  /  ( X `
 y ) ) )  =  ( ( 1  x.  1 )  /  ( ( X `
 x )  x.  ( X `  y
) ) ) )
5848, 57eqtr4d 2659 . . . 4  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  -> 
( 1  /  ( X `  ( x
( .r `  Z
) y ) ) )  =  ( ( 1  /  ( X `
 x ) )  x.  ( 1  / 
( X `  y
) ) ) )
5932, 6sseldi 3601 . . . . . . 7  |-  ( ph  ->  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )
60 eqid 2622 . . . . . . . . 9  |-  ( 1r
`  Z )  =  ( 1r `  Z
)
6139, 60ringidval 18503 . . . . . . . 8  |-  ( 1r
`  Z )  =  ( 0g `  (mulGrp `  Z ) )
62 cnfld1 19771 . . . . . . . . 9  |-  1  =  ( 1r ` fld )
6343, 62ringidval 18503 . . . . . . . 8  |-  1  =  ( 0g `  (mulGrp ` fld ) )
6461, 63mhm0 17343 . . . . . . 7  |-  ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )  ->  ( X `  ( 1r `  Z ) )  =  1 )
6559, 64syl 17 . . . . . 6  |-  ( ph  ->  ( X `  ( 1r `  Z ) )  =  1 )
6665oveq2d 6666 . . . . 5  |-  ( ph  ->  ( 1  /  ( X `  ( 1r `  Z ) ) )  =  ( 1  / 
1 ) )
67 1div1e1 10717 . . . . 5  |-  ( 1  /  1 )  =  1
6866, 67syl6eq 2672 . . . 4  |-  ( ph  ->  ( 1  /  ( X `  ( 1r `  Z ) ) )  =  1 )
692, 3, 4, 5, 9, 7, 11, 13, 15, 17, 28, 58, 68dchrelbasd 24964 . . 3  |-  ( ph  ->  ( k  e.  B  |->  if ( k  e.  U ,  ( 1  /  ( X `  k ) ) ,  0 ) )  e.  D )
701, 69syl5eqel 2705 . 2  |-  ( ph  ->  K  e.  D )
71 dchrmulid2.t . . . 4  |-  .x.  =  ( +g  `  G )
722, 3, 7, 71, 70, 6dchrmul 24973 . . 3  |-  ( ph  ->  ( K  .x.  X
)  =  ( K  oF  x.  X
) )
73 fvex 6201 . . . . . . 7  |-  ( Base `  Z )  e.  _V
744, 73eqeltri 2697 . . . . . 6  |-  B  e. 
_V
7574a1i 11 . . . . 5  |-  ( ph  ->  B  e.  _V )
76 ovex 6678 . . . . . . 7  |-  ( 1  /  ( X `  k ) )  e. 
_V
77 c0ex 10034 . . . . . . 7  |-  0  e.  _V
7876, 77ifex 4156 . . . . . 6  |-  if ( k  e.  U , 
( 1  /  ( X `  k )
) ,  0 )  e.  _V
7978a1i 11 . . . . 5  |-  ( (
ph  /\  k  e.  B )  ->  if ( k  e.  U ,  ( 1  / 
( X `  k
) ) ,  0 )  e.  _V )
8018ffvelrnda 6359 . . . . 5  |-  ( (
ph  /\  k  e.  B )  ->  ( X `  k )  e.  CC )
811a1i 11 . . . . 5  |-  ( ph  ->  K  =  ( k  e.  B  |->  if ( k  e.  U , 
( 1  /  ( X `  k )
) ,  0 ) ) )
8218feqmptd 6249 . . . . 5  |-  ( ph  ->  X  =  ( k  e.  B  |->  ( X `
 k ) ) )
8375, 79, 80, 81, 82offval2 6914 . . . 4  |-  ( ph  ->  ( K  oF  x.  X )  =  ( k  e.  B  |->  ( if ( k  e.  U ,  ( 1  /  ( X `
 k ) ) ,  0 )  x.  ( X `  k
) ) ) )
84 ovif 6737 . . . . . . 7  |-  ( if ( k  e.  U ,  ( 1  / 
( X `  k
) ) ,  0 )  x.  ( X `
 k ) )  =  if ( k  e.  U ,  ( ( 1  /  ( X `  k )
)  x.  ( X `
 k ) ) ,  ( 0  x.  ( X `  k
) ) )
8580adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  B )  /\  k  e.  U )  ->  ( X `  k )  e.  CC )
866adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  B )  ->  X  e.  D )
87 simpr 477 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  B )  ->  k  e.  B )
882, 3, 7, 4, 5, 86, 87dchrn0 24975 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  B )  ->  (
( X `  k
)  =/=  0  <->  k  e.  U ) )
8988biimpar 502 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  B )  /\  k  e.  U )  ->  ( X `  k )  =/=  0 )
9085, 89recid2d 10797 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  B )  /\  k  e.  U )  ->  (
( 1  /  ( X `  k )
)  x.  ( X `
 k ) )  =  1 )
9190ifeq1da 4116 . . . . . . . 8  |-  ( (
ph  /\  k  e.  B )  ->  if ( k  e.  U ,  ( ( 1  /  ( X `  k ) )  x.  ( X `  k
) ) ,  ( 0  x.  ( X `
 k ) ) )  =  if ( k  e.  U , 
1 ,  ( 0  x.  ( X `  k ) ) ) )
9280mul02d 10234 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  B )  ->  (
0  x.  ( X `
 k ) )  =  0 )
9392ifeq2d 4105 . . . . . . . 8  |-  ( (
ph  /\  k  e.  B )  ->  if ( k  e.  U ,  1 ,  ( 0  x.  ( X `
 k ) ) )  =  if ( k  e.  U , 
1 ,  0 ) )
9491, 93eqtrd 2656 . . . . . . 7  |-  ( (
ph  /\  k  e.  B )  ->  if ( k  e.  U ,  ( ( 1  /  ( X `  k ) )  x.  ( X `  k
) ) ,  ( 0  x.  ( X `
 k ) ) )  =  if ( k  e.  U , 
1 ,  0 ) )
9584, 94syl5eq 2668 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  ( if ( k  e.  U ,  ( 1  / 
( X `  k
) ) ,  0 )  x.  ( X `
 k ) )  =  if ( k  e.  U ,  1 ,  0 ) )
9695mpteq2dva 4744 . . . . 5  |-  ( ph  ->  ( k  e.  B  |->  ( if ( k  e.  U ,  ( 1  /  ( X `
 k ) ) ,  0 )  x.  ( X `  k
) ) )  =  ( k  e.  B  |->  if ( k  e.  U ,  1 ,  0 ) ) )
97 dchr1cl.o . . . . 5  |-  .1.  =  ( k  e.  B  |->  if ( k  e.  U ,  1 ,  0 ) )
9896, 97syl6reqr 2675 . . . 4  |-  ( ph  ->  .1.  =  ( k  e.  B  |->  ( if ( k  e.  U ,  ( 1  / 
( X `  k
) ) ,  0 )  x.  ( X `
 k ) ) ) )
9983, 98eqtr4d 2659 . . 3  |-  ( ph  ->  ( K  oF  x.  X )  =  .1.  )
10072, 99eqtrd 2656 . 2  |-  ( ph  ->  ( K  .x.  X
)  =  .1.  )
10170, 100jca 554 1  |-  ( ph  ->  ( K  e.  D  /\  ( K  .x.  X
)  =  .1.  )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   ifcif 4086    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   CCcc 9934   0cc0 9936   1c1 9937    x. cmul 9941    / cdiv 10684   NNcn 11020   Basecbs 15857   +g cplusg 15941   .rcmulr 15942   MndHom cmhm 17333  mulGrpcmgp 18489   1rcur 18501  Unitcui 18639  ℂfldccnfld 19746  ℤ/nczn 19851  DChrcdchr 24957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-imas 16168  df-qus 16169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-nsg 17592  df-eqg 17593  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-cnfld 19747  df-zring 19819  df-zn 19855  df-dchr 24958
This theorem is referenced by:  dchrabl  24979
  Copyright terms: Public domain W3C validator