Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnicn Structured version   Visualization version   Unicode version

Theorem dnicn 32482
Description: The "distance to nearest integer" function is continuous. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypothesis
Ref Expression
dnicn.1  |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  / 
2 ) ) )  -  x ) ) )
Assertion
Ref Expression
dnicn  |-  T  e.  ( RR -cn-> RR )

Proof of Theorem dnicn
Dummy variables  d 
e  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dnicn.1 . . 3  |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  / 
2 ) ) )  -  x ) ) )
21dnif 32464 . 2  |-  T : RR
--> RR
3 simpr 477 . . . 4  |-  ( ( y  e.  RR  /\  e  e.  RR+ )  -> 
e  e.  RR+ )
4 simplr 792 . . . . . . . . . . 11  |-  ( ( ( ( y  e.  RR  /\  e  e.  RR+ )  /\  z  e.  RR )  /\  ( abs `  ( z  -  y ) )  < 
e )  ->  z  e.  RR )
51, 4dnicld2 32463 . . . . . . . . . 10  |-  ( ( ( ( y  e.  RR  /\  e  e.  RR+ )  /\  z  e.  RR )  /\  ( abs `  ( z  -  y ) )  < 
e )  ->  ( T `  z )  e.  RR )
6 simplll 798 . . . . . . . . . . 11  |-  ( ( ( ( y  e.  RR  /\  e  e.  RR+ )  /\  z  e.  RR )  /\  ( abs `  ( z  -  y ) )  < 
e )  ->  y  e.  RR )
71, 6dnicld2 32463 . . . . . . . . . 10  |-  ( ( ( ( y  e.  RR  /\  e  e.  RR+ )  /\  z  e.  RR )  /\  ( abs `  ( z  -  y ) )  < 
e )  ->  ( T `  y )  e.  RR )
85, 7resubcld 10458 . . . . . . . . 9  |-  ( ( ( ( y  e.  RR  /\  e  e.  RR+ )  /\  z  e.  RR )  /\  ( abs `  ( z  -  y ) )  < 
e )  ->  (
( T `  z
)  -  ( T `
 y ) )  e.  RR )
98recnd 10068 . . . . . . . 8  |-  ( ( ( ( y  e.  RR  /\  e  e.  RR+ )  /\  z  e.  RR )  /\  ( abs `  ( z  -  y ) )  < 
e )  ->  (
( T `  z
)  -  ( T `
 y ) )  e.  CC )
109abscld 14175 . . . . . . 7  |-  ( ( ( ( y  e.  RR  /\  e  e.  RR+ )  /\  z  e.  RR )  /\  ( abs `  ( z  -  y ) )  < 
e )  ->  ( abs `  ( ( T `
 z )  -  ( T `  y ) ) )  e.  RR )
114, 6resubcld 10458 . . . . . . . . 9  |-  ( ( ( ( y  e.  RR  /\  e  e.  RR+ )  /\  z  e.  RR )  /\  ( abs `  ( z  -  y ) )  < 
e )  ->  (
z  -  y )  e.  RR )
1211recnd 10068 . . . . . . . 8  |-  ( ( ( ( y  e.  RR  /\  e  e.  RR+ )  /\  z  e.  RR )  /\  ( abs `  ( z  -  y ) )  < 
e )  ->  (
z  -  y )  e.  CC )
1312abscld 14175 . . . . . . 7  |-  ( ( ( ( y  e.  RR  /\  e  e.  RR+ )  /\  z  e.  RR )  /\  ( abs `  ( z  -  y ) )  < 
e )  ->  ( abs `  ( z  -  y ) )  e.  RR )
143ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( y  e.  RR  /\  e  e.  RR+ )  /\  z  e.  RR )  /\  ( abs `  ( z  -  y ) )  < 
e )  ->  e  e.  RR+ )
1514rpred 11872 . . . . . . 7  |-  ( ( ( ( y  e.  RR  /\  e  e.  RR+ )  /\  z  e.  RR )  /\  ( abs `  ( z  -  y ) )  < 
e )  ->  e  e.  RR )
161, 6, 4dnibnd 32481 . . . . . . 7  |-  ( ( ( ( y  e.  RR  /\  e  e.  RR+ )  /\  z  e.  RR )  /\  ( abs `  ( z  -  y ) )  < 
e )  ->  ( abs `  ( ( T `
 z )  -  ( T `  y ) ) )  <_  ( abs `  ( z  -  y ) ) )
17 simpr 477 . . . . . . 7  |-  ( ( ( ( y  e.  RR  /\  e  e.  RR+ )  /\  z  e.  RR )  /\  ( abs `  ( z  -  y ) )  < 
e )  ->  ( abs `  ( z  -  y ) )  < 
e )
1810, 13, 15, 16, 17lelttrd 10195 . . . . . 6  |-  ( ( ( ( y  e.  RR  /\  e  e.  RR+ )  /\  z  e.  RR )  /\  ( abs `  ( z  -  y ) )  < 
e )  ->  ( abs `  ( ( T `
 z )  -  ( T `  y ) ) )  <  e
)
1918ex 450 . . . . 5  |-  ( ( ( y  e.  RR  /\  e  e.  RR+ )  /\  z  e.  RR )  ->  ( ( abs `  ( z  -  y
) )  <  e  ->  ( abs `  (
( T `  z
)  -  ( T `
 y ) ) )  <  e ) )
2019ralrimiva 2966 . . . 4  |-  ( ( y  e.  RR  /\  e  e.  RR+ )  ->  A. z  e.  RR  ( ( abs `  (
z  -  y ) )  <  e  -> 
( abs `  (
( T `  z
)  -  ( T `
 y ) ) )  <  e ) )
21 breq2 4657 . . . . . . 7  |-  ( d  =  e  ->  (
( abs `  (
z  -  y ) )  <  d  <->  ( abs `  ( z  -  y
) )  <  e
) )
2221imbi1d 331 . . . . . 6  |-  ( d  =  e  ->  (
( ( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( T `  z
)  -  ( T `
 y ) ) )  <  e )  <-> 
( ( abs `  (
z  -  y ) )  <  e  -> 
( abs `  (
( T `  z
)  -  ( T `
 y ) ) )  <  e ) ) )
2322ralbidv 2986 . . . . 5  |-  ( d  =  e  ->  ( A. z  e.  RR  ( ( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( T `  z
)  -  ( T `
 y ) ) )  <  e )  <->  A. z  e.  RR  ( ( abs `  (
z  -  y ) )  <  e  -> 
( abs `  (
( T `  z
)  -  ( T `
 y ) ) )  <  e ) ) )
2423rspcev 3309 . . . 4  |-  ( ( e  e.  RR+  /\  A. z  e.  RR  (
( abs `  (
z  -  y ) )  <  e  -> 
( abs `  (
( T `  z
)  -  ( T `
 y ) ) )  <  e ) )  ->  E. d  e.  RR+  A. z  e.  RR  ( ( abs `  ( z  -  y
) )  <  d  ->  ( abs `  (
( T `  z
)  -  ( T `
 y ) ) )  <  e ) )
253, 20, 24syl2anc 693 . . 3  |-  ( ( y  e.  RR  /\  e  e.  RR+ )  ->  E. d  e.  RR+  A. z  e.  RR  ( ( abs `  ( z  -  y
) )  <  d  ->  ( abs `  (
( T `  z
)  -  ( T `
 y ) ) )  <  e ) )
2625rgen2 2975 . 2  |-  A. y  e.  RR  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  RR  (
( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( T `  z
)  -  ( T `
 y ) ) )  <  e )
27 ax-resscn 9993 . . 3  |-  RR  C_  CC
28 elcncf2 22693 . . 3  |-  ( ( RR  C_  CC  /\  RR  C_  CC )  ->  ( T  e.  ( RR -cn-> RR )  <->  ( T : RR
--> RR  /\  A. y  e.  RR  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  RR  (
( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( T `  z
)  -  ( T `
 y ) ) )  <  e ) ) ) )
2927, 27, 28mp2an 708 . 2  |-  ( T  e.  ( RR -cn-> RR )  <->  ( T : RR
--> RR  /\  A. y  e.  RR  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  RR  (
( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( T `  z
)  -  ( T `
 y ) ) )  <  e ) ) )
302, 26, 29mpbir2an 955 1  |-  T  e.  ( RR -cn-> RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   1c1 9937    + caddc 9939    < clt 10074    - cmin 10266    / cdiv 10684   2c2 11070   RR+crp 11832   |_cfl 12591   abscabs 13974   -cn->ccncf 22679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-cncf 22681
This theorem is referenced by:  knoppcnlem10  32492
  Copyright terms: Public domain W3C validator