Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpmul Structured version   Visualization version   Unicode version

Theorem dpmul 29621
Description: Multiplication with one decimal point. (Contributed by Thierry Arnoux, 26-Dec-2021.)
Hypotheses
Ref Expression
dpmul.a  |-  A  e. 
NN0
dpmul.b  |-  B  e. 
NN0
dpmul.c  |-  C  e. 
NN0
dpmul.d  |-  D  e. 
NN0
dpmul.e  |-  E  e. 
NN0
dpmul.g  |-  G  e. 
NN0
dpmul.j  |-  J  e. 
NN0
dpmul.k  |-  K  e. 
NN0
dpmul.1  |-  ( A  x.  C )  =  F
dpmul.2  |-  ( A  x.  D )  =  M
dpmul.3  |-  ( B  x.  C )  =  L
dpmul.4  |-  ( B  x.  D )  = ; E K
dpmul.5  |-  ( ( L  +  M )  +  E )  = ; G J
dpmul.6  |-  ( F  +  G )  =  I
Assertion
Ref Expression
dpmul  |-  ( ( A period B )  x.  ( C period D ) )  =  ( I
period_ J K )

Proof of Theorem dpmul
StepHypRef Expression
1 dpmul.a . . . . 5  |-  A  e. 
NN0
2 dpmul.b . . . . 5  |-  B  e. 
NN0
31, 2deccl 11512 . . . 4  |- ; A B  e.  NN0
4 dpmul.c . . . 4  |-  C  e. 
NN0
5 dpmul.d . . . 4  |-  D  e. 
NN0
6 eqid 2622 . . . 4  |- ; C D  = ; C D
7 dpmul.k . . . 4  |-  K  e. 
NN0
8 dpmul.2 . . . . . 6  |-  ( A  x.  D )  =  M
91, 5nn0mulcli 11331 . . . . . 6  |-  ( A  x.  D )  e. 
NN0
108, 9eqeltrri 2698 . . . . 5  |-  M  e. 
NN0
11 dpmul.e . . . . 5  |-  E  e. 
NN0
1210, 11nn0addcli 11330 . . . 4  |-  ( M  +  E )  e. 
NN0
13 eqid 2622 . . . . . . 7  |- ; A B  = ; A B
14 dpmul.3 . . . . . . . 8  |-  ( B  x.  C )  =  L
152, 4nn0mulcli 11331 . . . . . . . 8  |-  ( B  x.  C )  e. 
NN0
1614, 15eqeltrri 2698 . . . . . . 7  |-  L  e. 
NN0
17 dpmul.1 . . . . . . 7  |-  ( A  x.  C )  =  F
184, 1, 2, 13, 16, 17, 14decmul1 11585 . . . . . 6  |-  (; A B  x.  C
)  = ; F L
1918oveq1i 6660 . . . . 5  |-  ( (; A B  x.  C )  +  ( M  +  E ) )  =  (; F L  +  ( M  +  E )
)
20 dfdec10 11497 . . . . . 6  |- ; F L  =  ( (; 1 0  x.  F
)  +  L )
2120oveq1i 6660 . . . . 5  |-  (; F L  +  ( M  +  E ) )  =  ( ( (; 1 0  x.  F
)  +  L )  +  ( M  +  E ) )
22 10nn0 11516 . . . . . . . . 9  |- ; 1 0  e.  NN0
2322nn0cni 11304 . . . . . . . 8  |- ; 1 0  e.  CC
241, 4nn0mulcli 11331 . . . . . . . . . 10  |-  ( A  x.  C )  e. 
NN0
2517, 24eqeltrri 2698 . . . . . . . . 9  |-  F  e. 
NN0
2625nn0cni 11304 . . . . . . . 8  |-  F  e.  CC
2723, 26mulcli 10045 . . . . . . 7  |-  (; 1 0  x.  F
)  e.  CC
2816nn0cni 11304 . . . . . . 7  |-  L  e.  CC
2912nn0cni 11304 . . . . . . 7  |-  ( M  +  E )  e.  CC
3027, 28, 29addassi 10048 . . . . . 6  |-  ( ( (; 1 0  x.  F
)  +  L )  +  ( M  +  E ) )  =  ( (; 1 0  x.  F
)  +  ( L  +  ( M  +  E ) ) )
31 dpmul.5 . . . . . . . 8  |-  ( ( L  +  M )  +  E )  = ; G J
3210nn0cni 11304 . . . . . . . . 9  |-  M  e.  CC
3311nn0cni 11304 . . . . . . . . 9  |-  E  e.  CC
3428, 32, 33addassi 10048 . . . . . . . 8  |-  ( ( L  +  M )  +  E )  =  ( L  +  ( M  +  E ) )
35 dfdec10 11497 . . . . . . . 8  |- ; G J  =  ( (; 1 0  x.  G
)  +  J )
3631, 34, 353eqtr3ri 2653 . . . . . . 7  |-  ( (; 1
0  x.  G )  +  J )  =  ( L  +  ( M  +  E ) )
3736oveq2i 6661 . . . . . 6  |-  ( (; 1
0  x.  F )  +  ( (; 1 0  x.  G
)  +  J ) )  =  ( (; 1
0  x.  F )  +  ( L  +  ( M  +  E
) ) )
38 dfdec10 11497 . . . . . . 7  |- ; I J  =  ( (; 1 0  x.  I
)  +  J )
39 dpmul.g . . . . . . . . . . 11  |-  G  e. 
NN0
4039nn0cni 11304 . . . . . . . . . 10  |-  G  e.  CC
4123, 26, 40adddii 10050 . . . . . . . . 9  |-  (; 1 0  x.  ( F  +  G )
)  =  ( (; 1
0  x.  F )  +  (; 1 0  x.  G
) )
42 dpmul.6 . . . . . . . . . 10  |-  ( F  +  G )  =  I
4342oveq2i 6661 . . . . . . . . 9  |-  (; 1 0  x.  ( F  +  G )
)  =  (; 1 0  x.  I
)
4441, 43eqtr3i 2646 . . . . . . . 8  |-  ( (; 1
0  x.  F )  +  (; 1 0  x.  G
) )  =  (; 1
0  x.  I )
4544oveq1i 6660 . . . . . . 7  |-  ( ( (; 1 0  x.  F
)  +  (; 1 0  x.  G
) )  +  J
)  =  ( (; 1
0  x.  I )  +  J )
4623, 40mulcli 10045 . . . . . . . 8  |-  (; 1 0  x.  G
)  e.  CC
47 dpmul.j . . . . . . . . 9  |-  J  e. 
NN0
4847nn0cni 11304 . . . . . . . 8  |-  J  e.  CC
4927, 46, 48addassi 10048 . . . . . . 7  |-  ( ( (; 1 0  x.  F
)  +  (; 1 0  x.  G
) )  +  J
)  =  ( (; 1
0  x.  F )  +  ( (; 1 0  x.  G
)  +  J ) )
5038, 45, 493eqtr2ri 2651 . . . . . 6  |-  ( (; 1
0  x.  F )  +  ( (; 1 0  x.  G
)  +  J ) )  = ; I J
5130, 37, 503eqtr2i 2650 . . . . 5  |-  ( ( (; 1 0  x.  F
)  +  L )  +  ( M  +  E ) )  = ; I J
5219, 21, 513eqtri 2648 . . . 4  |-  ( (; A B  x.  C )  +  ( M  +  E ) )  = ; I J
538oveq1i 6660 . . . . 5  |-  ( ( A  x.  D )  +  E )  =  ( M  +  E
)
54 dpmul.4 . . . . 5  |-  ( B  x.  D )  = ; E K
555, 1, 2, 13, 7, 11, 53, 54decmul1c 11587 . . . 4  |-  (; A B  x.  D
)  = ; ( M  +  E
) K
563, 4, 5, 6, 7, 12, 52, 55decmul2c 11589 . . 3  |-  (; A B  x. ; C D )  = ;; I J K
572nn0rei 11303 . . . . . . 7  |-  B  e.  RR
58 dpcl 29598 . . . . . . 7  |-  ( ( A  e.  NN0  /\  B  e.  RR )  ->  ( A period B )  e.  RR )
591, 57, 58mp2an 708 . . . . . 6  |-  ( A
period B )  e.  RR
6059recni 10052 . . . . 5  |-  ( A
period B )  e.  CC
615nn0rei 11303 . . . . . . 7  |-  D  e.  RR
62 dpcl 29598 . . . . . . 7  |-  ( ( C  e.  NN0  /\  D  e.  RR )  ->  ( C period D )  e.  RR )
634, 61, 62mp2an 708 . . . . . 6  |-  ( C
period D )  e.  RR
6463recni 10052 . . . . 5  |-  ( C
period D )  e.  CC
6560, 64, 23, 23mul4i 10233 . . . 4  |-  ( ( ( A period B )  x.  ( C period D ) )  x.  (; 1 0  x. ; 1 0 ) )  =  ( ( ( A period B )  x. ; 1
0 )  x.  (
( C period D )  x. ; 1 0 ) )
6622dec0u 11520 . . . . 5  |-  (; 1 0  x. ; 1 0 )  = ;; 1 0 0
6766oveq2i 6661 . . . 4  |-  ( ( ( A period B )  x.  ( C period D ) )  x.  (; 1 0  x. ; 1 0 ) )  =  ( ( ( A period B )  x.  ( C period D ) )  x. ;; 1 0 0 )
681, 57dpmul10 29603 . . . . 5  |-  ( ( A period B )  x. ; 1
0 )  = ; A B
694, 61dpmul10 29603 . . . . 5  |-  ( ( C period D )  x. ; 1
0 )  = ; C D
7068, 69oveq12i 6662 . . . 4  |-  ( ( ( A period B )  x. ; 1 0 )  x.  ( ( C period D )  x. ; 1 0 ) )  =  (; A B  x. ; C D )
7165, 67, 703eqtr3i 2652 . . 3  |-  ( ( ( A period B )  x.  ( C period D ) )  x. ;; 1 0 0 )  =  (; A B  x. ; C D )
7225, 39nn0addcli 11330 . . . . 5  |-  ( F  +  G )  e. 
NN0
7342, 72eqeltrri 2698 . . . 4  |-  I  e. 
NN0
747nn0rei 11303 . . . 4  |-  K  e.  RR
7573, 47, 74dpmul100 29605 . . 3  |-  ( ( I period_ J K )  x. ;; 1 0 0 )  = ;; I J K
7656, 71, 753eqtr4i 2654 . 2  |-  ( ( ( A period B )  x.  ( C period D ) )  x. ;; 1 0 0 )  =  ( ( I period_ J K )  x. ;; 1 0 0 )
7760, 64mulcli 10045 . . 3  |-  ( ( A period B )  x.  ( C period D ) )  e.  CC
7847nn0rei 11303 . . . . . 6  |-  J  e.  RR
79 dp2cl 29587 . . . . . 6  |-  ( ( J  e.  RR  /\  K  e.  RR )  -> _ J K  e.  RR )
8078, 74, 79mp2an 708 . . . . 5  |- _ J K  e.  RR
81 dpcl 29598 . . . . 5  |-  ( ( I  e.  NN0  /\ _ J K  e.  RR )  -> 
( I period_ J K )  e.  RR )
8273, 80, 81mp2an 708 . . . 4  |-  ( I
period_ J K )  e.  RR
8382recni 10052 . . 3  |-  ( I
period_ J K )  e.  CC
84 10nn 11514 . . . . . 6  |- ; 1 0  e.  NN
8584decnncl2 11525 . . . . 5  |- ;; 1 0 0  e.  NN
8685nncni 11030 . . . 4  |- ;; 1 0 0  e.  CC
8785nnne0i 11055 . . . 4  |- ;; 1 0 0  =/=  0
8886, 87pm3.2i 471 . . 3  |-  (;; 1 0 0  e.  CC  /\ ;; 1 0 0  =/=  0 )
89 mulcan2 10665 . . 3  |-  ( ( ( ( A period B )  x.  ( C
period D ) )  e.  CC  /\  ( I
period_ J K )  e.  CC  /\  (;; 1 0 0  e.  CC  /\ ;; 1 0 0  =/=  0 ) )  -> 
( ( ( ( A period B )  x.  ( C period D ) )  x. ;; 1 0 0 )  =  ( ( I period_ J K )  x. ;; 1 0 0 )  <-> 
( ( A period B )  x.  ( C
period D ) )  =  ( I period_ J K ) ) )
9077, 83, 88, 89mp3an 1424 . 2  |-  ( ( ( ( A period B )  x.  ( C
period D ) )  x. ;; 1 0 0 )  =  ( ( I
period_ J K )  x. ;; 1 0 0 )  <->  ( ( A period B )  x.  ( C period D ) )  =  ( I
period_ J K ) )
9176, 90mpbi 220 1  |-  ( ( A period B )  x.  ( C period D ) )  =  ( I
period_ J K )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   NN0cn0 11292  ;cdc 11493  _cdp2 29577   periodcdp 29595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-dec 11494  df-dp2 29578  df-dp 29596
This theorem is referenced by:  hgt750lem2  30730
  Copyright terms: Public domain W3C validator