MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfinv Structured version   Visualization version   Unicode version

Theorem dprdfinv 18418
Description: Take the inverse of a group sum over a family of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
eldprdi.0  |-  .0.  =  ( 0g `  G )
eldprdi.w  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  }
eldprdi.1  |-  ( ph  ->  G dom DProd  S )
eldprdi.2  |-  ( ph  ->  dom  S  =  I )
eldprdi.3  |-  ( ph  ->  F  e.  W )
dprdfinv.b  |-  N  =  ( invg `  G )
Assertion
Ref Expression
dprdfinv  |-  ( ph  ->  ( ( N  o.  F )  e.  W  /\  ( G  gsumg  ( N  o.  F
) )  =  ( N `  ( G 
gsumg  F ) ) ) )
Distinct variable groups:    h, F    h, i, G    h, I,
i    h, N    .0. , h    S, h, i
Allowed substitution hints:    ph( h, i)    F( i)    N( i)    W( h, i)    .0. ( i)

Proof of Theorem dprdfinv
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eldprdi.1 . . . . . 6  |-  ( ph  ->  G dom DProd  S )
2 dprdgrp 18404 . . . . . 6  |-  ( G dom DProd  S  ->  G  e. 
Grp )
31, 2syl 17 . . . . 5  |-  ( ph  ->  G  e.  Grp )
4 eqid 2622 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
5 dprdfinv.b . . . . . 6  |-  N  =  ( invg `  G )
64, 5grpinvf 17466 . . . . 5  |-  ( G  e.  Grp  ->  N : ( Base `  G
) --> ( Base `  G
) )
73, 6syl 17 . . . 4  |-  ( ph  ->  N : ( Base `  G ) --> ( Base `  G ) )
8 eldprdi.w . . . . 5  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  }
9 eldprdi.2 . . . . 5  |-  ( ph  ->  dom  S  =  I )
10 eldprdi.3 . . . . 5  |-  ( ph  ->  F  e.  W )
118, 1, 9, 10, 4dprdff 18411 . . . 4  |-  ( ph  ->  F : I --> ( Base `  G ) )
12 fcompt 6400 . . . 4  |-  ( ( N : ( Base `  G ) --> ( Base `  G )  /\  F : I --> ( Base `  G ) )  -> 
( N  o.  F
)  =  ( x  e.  I  |->  ( N `
 ( F `  x ) ) ) )
137, 11, 12syl2anc 693 . . 3  |-  ( ph  ->  ( N  o.  F
)  =  ( x  e.  I  |->  ( N `
 ( F `  x ) ) ) )
141, 9dprdf2 18406 . . . . . 6  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
1514ffvelrnda 6359 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  ( S `  x )  e.  (SubGrp `  G )
)
168, 1, 9, 10dprdfcl 18412 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  ( F `  x )  e.  ( S `  x
) )
175subginvcl 17603 . . . . 5  |-  ( ( ( S `  x
)  e.  (SubGrp `  G )  /\  ( F `  x )  e.  ( S `  x
) )  ->  ( N `  ( F `  x ) )  e.  ( S `  x
) )
1815, 16, 17syl2anc 693 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  ( N `  ( F `  x ) )  e.  ( S `  x
) )
191, 9dprddomcld 18400 . . . . . 6  |-  ( ph  ->  I  e.  _V )
20 mptexg 6484 . . . . . 6  |-  ( I  e.  _V  ->  (
x  e.  I  |->  ( N `  ( F `
 x ) ) )  e.  _V )
2119, 20syl 17 . . . . 5  |-  ( ph  ->  ( x  e.  I  |->  ( N `  ( F `  x )
) )  e.  _V )
22 funmpt 5926 . . . . . 6  |-  Fun  (
x  e.  I  |->  ( N `  ( F `
 x ) ) )
2322a1i 11 . . . . 5  |-  ( ph  ->  Fun  ( x  e.  I  |->  ( N `  ( F `  x ) ) ) )
248, 1, 9, 10dprdffsupp 18413 . . . . 5  |-  ( ph  ->  F finSupp  .0.  )
25 ssid 3624 . . . . . . . . . 10  |-  ( F supp 
.0.  )  C_  ( F supp  .0.  )
2625a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( F supp  .0.  )  C_  ( F supp  .0.  )
)
27 eldprdi.0 . . . . . . . . . . 11  |-  .0.  =  ( 0g `  G )
28 fvex 6201 . . . . . . . . . . 11  |-  ( 0g
`  G )  e. 
_V
2927, 28eqeltri 2697 . . . . . . . . . 10  |-  .0.  e.  _V
3029a1i 11 . . . . . . . . 9  |-  ( ph  ->  .0.  e.  _V )
3111, 26, 19, 30suppssr 7326 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( I  \  ( F supp  .0.  ) ) )  ->  ( F `  x )  =  .0.  )
3231fveq2d 6195 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( I  \  ( F supp  .0.  ) ) )  ->  ( N `  ( F `  x ) )  =  ( N `
 .0.  ) )
3327, 5grpinvid 17476 . . . . . . . . 9  |-  ( G  e.  Grp  ->  ( N `  .0.  )  =  .0.  )
343, 33syl 17 . . . . . . . 8  |-  ( ph  ->  ( N `  .0.  )  =  .0.  )
3534adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( I  \  ( F supp  .0.  ) ) )  ->  ( N `  .0.  )  =  .0.  )
3632, 35eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  x  e.  ( I  \  ( F supp  .0.  ) ) )  ->  ( N `  ( F `  x ) )  =  .0.  )
3736, 19suppss2 7329 . . . . 5  |-  ( ph  ->  ( ( x  e.  I  |->  ( N `  ( F `  x ) ) ) supp  .0.  )  C_  ( F supp  .0.  )
)
38 fsuppsssupp 8291 . . . . 5  |-  ( ( ( ( x  e.  I  |->  ( N `  ( F `  x ) ) )  e.  _V  /\ 
Fun  ( x  e.  I  |->  ( N `  ( F `  x ) ) ) )  /\  ( F finSupp  .0.  /\  (
( x  e.  I  |->  ( N `  ( F `  x )
) ) supp  .0.  )  C_  ( F supp  .0.  )
) )  ->  (
x  e.  I  |->  ( N `  ( F `
 x ) ) ) finSupp  .0.  )
3921, 23, 24, 37, 38syl22anc 1327 . . . 4  |-  ( ph  ->  ( x  e.  I  |->  ( N `  ( F `  x )
) ) finSupp  .0.  )
408, 1, 9, 18, 39dprdwd 18410 . . 3  |-  ( ph  ->  ( x  e.  I  |->  ( N `  ( F `  x )
) )  e.  W
)
4113, 40eqeltrd 2701 . 2  |-  ( ph  ->  ( N  o.  F
)  e.  W )
42 eqid 2622 . . 3  |-  (Cntz `  G )  =  (Cntz `  G )
438, 1, 9, 10, 42dprdfcntz 18414 . . 3  |-  ( ph  ->  ran  F  C_  (
(Cntz `  G ) `  ran  F ) )
444, 27, 42, 5, 3, 19, 11, 43, 24gsumzinv 18345 . 2  |-  ( ph  ->  ( G  gsumg  ( N  o.  F
) )  =  ( N `  ( G 
gsumg  F ) ) )
4541, 44jca 554 1  |-  ( ph  ->  ( ( N  o.  F )  e.  W  /\  ( G  gsumg  ( N  o.  F
) )  =  ( N `  ( G 
gsumg  F ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114    o. ccom 5118   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   supp csupp 7295   X_cixp 7908   finSupp cfsupp 8275   Basecbs 15857   0gc0g 16100    gsumg cgsu 16101   Grpcgrp 17422   invgcminusg 17423  SubGrpcsubg 17588  Cntzccntz 17748   DProd cdprd 18392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-subg 17591  df-ghm 17658  df-gim 17701  df-cntz 17750  df-oppg 17776  df-cmn 18195  df-dprd 18394
This theorem is referenced by:  dprdfsub  18420
  Copyright terms: Public domain W3C validator