Proof of Theorem dquartlem2
| Step | Hyp | Ref
| Expression |
| 1 | | dquart.m |
. . . . . . 7
         |
| 2 | | 2cn 11091 |
. . . . . . . . 9
 |
| 3 | | dquart.s |
. . . . . . . . 9
   |
| 4 | | mulcl 10020 |
. . . . . . . . 9
 
     |
| 5 | 2, 3, 4 | sylancr 695 |
. . . . . . . 8
     |
| 6 | 5 | sqcld 13006 |
. . . . . . 7
         |
| 7 | 1, 6 | eqeltrd 2701 |
. . . . . 6
   |
| 8 | | dquart.b |
. . . . . 6
   |
| 9 | 7, 8 | addcld 10059 |
. . . . 5
     |
| 10 | 2 | a1i 11 |
. . . . 5
   |
| 11 | | 2ne0 11113 |
. . . . . 6
 |
| 12 | 11 | a1i 11 |
. . . . 5
   |
| 13 | 9, 10, 12 | sqdivd 13021 |
. . . 4
                       |
| 14 | | sq2 12960 |
. . . . 5
     |
| 15 | 14 | oveq2i 6661 |
. . . 4
                     |
| 16 | 13, 15 | syl6eq 2672 |
. . 3
                   |
| 17 | 16 | oveq1d 6665 |
. 2
                                       |
| 18 | 9 | sqcld 13006 |
. . . . 5
         |
| 19 | | 4cn 11098 |
. . . . . 6
 |
| 20 | 19 | a1i 11 |
. . . . 5
   |
| 21 | | 4ne0 11117 |
. . . . . 6
 |
| 22 | 21 | a1i 11 |
. . . . 5
   |
| 23 | 18, 20, 22 | divcld 10801 |
. . . 4
           |
| 24 | | dquart.c |
. . . . . . 7
   |
| 25 | 24 | sqcld 13006 |
. . . . . 6
       |
| 26 | 25, 20, 22 | divcld 10801 |
. . . . 5
         |
| 27 | | dquart.m0 |
. . . . 5
   |
| 28 | 26, 7, 27 | divcld 10801 |
. . . 4
           |
| 29 | 23, 28 | subcld 10392 |
. . 3
                     |
| 30 | | dquart.d |
. . 3
   |
| 31 | 23, 28, 7 | subdird 10487 |
. . . 4
                                             |
| 32 | 18, 7, 20, 22 | div23d 10838 |
. . . . . 6
                       |
| 33 | 32 | eqcomd 2628 |
. . . . 5
                       |
| 34 | 26, 7, 27 | divcan1d 10802 |
. . . . 5
                   |
| 35 | 33, 34 | oveq12d 6668 |
. . . 4
                                           |
| 36 | | binom2 12979 |
. . . . . . . . . . . . 13
 
                         |
| 37 | 7, 8, 36 | syl2anc 693 |
. . . . . . . . . . . 12
                         |
| 38 | 37 | oveq1d 6665 |
. . . . . . . . . . 11
                             |
| 39 | 7 | sqcld 13006 |
. . . . . . . . . . . . 13
       |
| 40 | 7, 8 | mulcld 10060 |
. . . . . . . . . . . . . 14
     |
| 41 | | mulcl 10020 |
. . . . . . . . . . . . . 14
  
        |
| 42 | 2, 40, 41 | sylancr 695 |
. . . . . . . . . . . . 13
  
    |
| 43 | 39, 42 | addcld 10059 |
. . . . . . . . . . . 12
             |
| 44 | 8 | sqcld 13006 |
. . . . . . . . . . . 12
       |
| 45 | 43, 44, 7 | adddird 10065 |
. . . . . . . . . . 11
                                         |
| 46 | 39, 42, 7 | adddird 10065 |
. . . . . . . . . . . . 13
        
                    |
| 47 | | df-3 11080 |
. . . . . . . . . . . . . . . 16
   |
| 48 | 47 | oveq2i 6661 |
. . . . . . . . . . . . . . 15
           |
| 49 | | 2nn0 11309 |
. . . . . . . . . . . . . . . 16
 |
| 50 | | expp1 12867 |
. . . . . . . . . . . . . . . 16
 
               |
| 51 | 7, 49, 50 | sylancl 694 |
. . . . . . . . . . . . . . 15
               |
| 52 | 48, 51 | syl5req 2669 |
. . . . . . . . . . . . . 14
             |
| 53 | | mulcl 10020 |
. . . . . . . . . . . . . . . . 17
 
     |
| 54 | 2, 8, 53 | sylancr 695 |
. . . . . . . . . . . . . . . 16
     |
| 55 | 54, 7, 7 | mulassd 10063 |
. . . . . . . . . . . . . . 15
               |
| 56 | 10, 7, 8 | mulassd 10063 |
. . . . . . . . . . . . . . . . 17
           |
| 57 | 10, 7, 8 | mul32d 10246 |
. . . . . . . . . . . . . . . . 17
           |
| 58 | 56, 57 | eqtr3d 2658 |
. . . . . . . . . . . . . . . 16
  
        |
| 59 | 58 | oveq1d 6665 |
. . . . . . . . . . . . . . 15
               |
| 60 | 7 | sqvald 13005 |
. . . . . . . . . . . . . . . 16
         |
| 61 | 60 | oveq2d 6666 |
. . . . . . . . . . . . . . 15
                 |
| 62 | 55, 59, 61 | 3eqtr4d 2666 |
. . . . . . . . . . . . . 14
                 |
| 63 | 52, 62 | oveq12d 6668 |
. . . . . . . . . . . . 13
          
                    |
| 64 | 46, 63 | eqtrd 2656 |
. . . . . . . . . . . 12
        
                    |
| 65 | 64 | oveq1d 6665 |
. . . . . . . . . . 11
                                             |
| 66 | 38, 45, 65 | 3eqtrd 2660 |
. . . . . . . . . 10
                                 |
| 67 | 66 | oveq1d 6665 |
. . . . . . . . 9
                                             |
| 68 | | 3nn0 11310 |
. . . . . . . . . . . . 13
 |
| 69 | | expcl 12878 |
. . . . . . . . . . . . 13
 
       |
| 70 | 7, 68, 69 | sylancl 694 |
. . . . . . . . . . . 12
       |
| 71 | 54, 39 | mulcld 10060 |
. . . . . . . . . . . 12
           |
| 72 | 70, 71 | addcld 10059 |
. . . . . . . . . . 11
                 |
| 73 | 44, 7 | mulcld 10060 |
. . . . . . . . . . 11
         |
| 74 | | mulcl 10020 |
. . . . . . . . . . . . 13
 
     |
| 75 | 19, 30, 74 | sylancr 695 |
. . . . . . . . . . . 12
     |
| 76 | 75, 7 | mulcld 10060 |
. . . . . . . . . . 11
       |
| 77 | 72, 73, 76 | addsubassd 10412 |
. . . . . . . . . 10
                                                           |
| 78 | 44, 75, 7 | subdird 10487 |
. . . . . . . . . . 11
                         |
| 79 | 78 | oveq2d 6666 |
. . . . . . . . . 10
                                                         |
| 80 | 77, 79 | eqtr4d 2659 |
. . . . . . . . 9
                                                         |
| 81 | 44, 75 | subcld 10392 |
. . . . . . . . . . . 12
           |
| 82 | 81, 7 | mulcld 10060 |
. . . . . . . . . . 11
             |
| 83 | 72, 82 | addcld 10059 |
. . . . . . . . . 10
                             |
| 84 | 25 | negcld 10379 |
. . . . . . . . . . . 12
        |
| 85 | 72, 82, 84 | addassd 10062 |
. . . . . . . . . . 11
                                                                     |
| 86 | 83, 25 | negsubd 10398 |
. . . . . . . . . . 11
                                                                    |
| 87 | | dquart.3 |
. . . . . . . . . . 11
                                    |
| 88 | 85, 86, 87 | 3eqtr3d 2664 |
. . . . . . . . . 10
                                   |
| 89 | 83, 25, 88 | subeq0d 10400 |
. . . . . . . . 9
                                 |
| 90 | 67, 80, 89 | 3eqtrd 2660 |
. . . . . . . 8
                     |
| 91 | 18, 7 | mulcld 10060 |
. . . . . . . . 9
           |
| 92 | | subsub23 10286 |
. . . . . . . . 9
                                                           |
| 93 | 91, 76, 25, 92 | syl3anc 1326 |
. . . . . . . 8
                                         |
| 94 | 90, 93 | mpbid 222 |
. . . . . . 7
                     |
| 95 | 20, 30, 7 | mulassd 10063 |
. . . . . . 7
           |
| 96 | 94, 95 | eqtrd 2656 |
. . . . . 6
                     |
| 97 | 96 | oveq1d 6665 |
. . . . 5
                         |
| 98 | 91, 25, 20, 22 | divsubdird 10840 |
. . . . 5
                                     |
| 99 | 30, 7 | mulcld 10060 |
. . . . . 6
     |
| 100 | 99, 20, 22 | divcan3d 10806 |
. . . . 5
           |
| 101 | 97, 98, 100 | 3eqtr3d 2664 |
. . . 4
                       |
| 102 | 31, 35, 101 | 3eqtrd 2660 |
. . 3
                         |
| 103 | 29, 30, 7, 27, 102 | mulcan2ad 10663 |
. 2
                     |
| 104 | 17, 103 | eqtrd 2656 |
1
                     |