Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhvaddass Structured version   Visualization version   Unicode version

Theorem dvhvaddass 36386
Description: Associativity of vector sum. (Contributed by NM, 31-Oct-2013.)
Hypotheses
Ref Expression
dvhvaddcl.h  |-  H  =  ( LHyp `  K
)
dvhvaddcl.t  |-  T  =  ( ( LTrn `  K
) `  W )
dvhvaddcl.e  |-  E  =  ( ( TEndo `  K
) `  W )
dvhvaddcl.u  |-  U  =  ( ( DVecH `  K
) `  W )
dvhvaddcl.d  |-  D  =  (Scalar `  U )
dvhvaddcl.p  |-  .+^  =  ( +g  `  D )
dvhvaddcl.a  |-  .+  =  ( +g  `  U )
Assertion
Ref Expression
dvhvaddass  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( F  .+  G )  .+  I
)  =  ( F 
.+  ( G  .+  I ) ) )

Proof of Theorem dvhvaddass
StepHypRef Expression
1 coass 5654 . . . 4  |-  ( ( ( 1st `  F
)  o.  ( 1st `  G ) )  o.  ( 1st `  I
) )  =  ( ( 1st `  F
)  o.  ( ( 1st `  G )  o.  ( 1st `  I
) ) )
2 dvhvaddcl.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
3 dvhvaddcl.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
4 dvhvaddcl.e . . . . . . . . 9  |-  E  =  ( ( TEndo `  K
) `  W )
5 dvhvaddcl.u . . . . . . . . 9  |-  U  =  ( ( DVecH `  K
) `  W )
6 dvhvaddcl.d . . . . . . . . 9  |-  D  =  (Scalar `  U )
7 dvhvaddcl.a . . . . . . . . 9  |-  .+  =  ( +g  `  U )
8 dvhvaddcl.p . . . . . . . . 9  |-  .+^  =  ( +g  `  D )
92, 3, 4, 5, 6, 7, 8dvhvadd 36381 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
) ) )  -> 
( F  .+  G
)  =  <. (
( 1st `  F
)  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  G
) ) >. )
1093adantr3 1222 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( F  .+  G
)  =  <. (
( 1st `  F
)  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  G
) ) >. )
1110fveq2d 6195 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 1st `  ( F  .+  G ) )  =  ( 1st `  <. ( ( 1st `  F
)  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  G
) ) >. )
)
12 fvex 6201 . . . . . . . 8  |-  ( 1st `  F )  e.  _V
13 fvex 6201 . . . . . . . 8  |-  ( 1st `  G )  e.  _V
1412, 13coex 7118 . . . . . . 7  |-  ( ( 1st `  F )  o.  ( 1st `  G
) )  e.  _V
15 ovex 6678 . . . . . . 7  |-  ( ( 2nd `  F ) 
.+^  ( 2nd `  G
) )  e.  _V
1614, 15op1st 7176 . . . . . 6  |-  ( 1st `  <. ( ( 1st `  F )  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F )  .+^  ( 2nd `  G ) ) >.
)  =  ( ( 1st `  F )  o.  ( 1st `  G
) )
1711, 16syl6eq 2672 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 1st `  ( F  .+  G ) )  =  ( ( 1st `  F )  o.  ( 1st `  G ) ) )
1817coeq1d 5283 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( 1st `  ( F  .+  G ) )  o.  ( 1st `  I
) )  =  ( ( ( 1st `  F
)  o.  ( 1st `  G ) )  o.  ( 1st `  I
) ) )
192, 3, 4, 5, 6, 7, 8dvhvadd 36381 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( G  .+  I
)  =  <. (
( 1st `  G
)  o.  ( 1st `  I ) ) ,  ( ( 2nd `  G
)  .+^  ( 2nd `  I
) ) >. )
20193adantr1 1220 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( G  .+  I
)  =  <. (
( 1st `  G
)  o.  ( 1st `  I ) ) ,  ( ( 2nd `  G
)  .+^  ( 2nd `  I
) ) >. )
2120fveq2d 6195 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 1st `  ( G  .+  I ) )  =  ( 1st `  <. ( ( 1st `  G
)  o.  ( 1st `  I ) ) ,  ( ( 2nd `  G
)  .+^  ( 2nd `  I
) ) >. )
)
22 fvex 6201 . . . . . . . 8  |-  ( 1st `  I )  e.  _V
2313, 22coex 7118 . . . . . . 7  |-  ( ( 1st `  G )  o.  ( 1st `  I
) )  e.  _V
24 ovex 6678 . . . . . . 7  |-  ( ( 2nd `  G ) 
.+^  ( 2nd `  I
) )  e.  _V
2523, 24op1st 7176 . . . . . 6  |-  ( 1st `  <. ( ( 1st `  G )  o.  ( 1st `  I ) ) ,  ( ( 2nd `  G )  .+^  ( 2nd `  I ) ) >.
)  =  ( ( 1st `  G )  o.  ( 1st `  I
) )
2621, 25syl6eq 2672 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 1st `  ( G  .+  I ) )  =  ( ( 1st `  G )  o.  ( 1st `  I ) ) )
2726coeq2d 5284 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( 1st `  F
)  o.  ( 1st `  ( G  .+  I
) ) )  =  ( ( 1st `  F
)  o.  ( ( 1st `  G )  o.  ( 1st `  I
) ) ) )
281, 18, 273eqtr4a 2682 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( 1st `  ( F  .+  G ) )  o.  ( 1st `  I
) )  =  ( ( 1st `  F
)  o.  ( 1st `  ( G  .+  I
) ) ) )
29 xp2nd 7199 . . . . . 6  |-  ( F  e.  ( T  X.  E )  ->  ( 2nd `  F )  e.  E )
30 xp2nd 7199 . . . . . 6  |-  ( G  e.  ( T  X.  E )  ->  ( 2nd `  G )  e.  E )
31 xp2nd 7199 . . . . . 6  |-  ( I  e.  ( T  X.  E )  ->  ( 2nd `  I )  e.  E )
3229, 30, 313anim123i 1247 . . . . 5  |-  ( ( F  e.  ( T  X.  E )  /\  G  e.  ( T  X.  E )  /\  I  e.  ( T  X.  E
) )  ->  (
( 2nd `  F
)  e.  E  /\  ( 2nd `  G )  e.  E  /\  ( 2nd `  I )  e.  E ) )
33 eqid 2622 . . . . . . . . . 10  |-  ( (
EDRing `  K ) `  W )  =  ( ( EDRing `  K ) `  W )
342, 33, 5, 6dvhsca 36371 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  =  ( (
EDRing `  K ) `  W ) )
352, 33erngdv 36281 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( EDRing `  K
) `  W )  e.  DivRing )
3634, 35eqeltrd 2701 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  DivRing )
37 drnggrp 18755 . . . . . . . 8  |-  ( D  e.  DivRing  ->  D  e.  Grp )
3836, 37syl 17 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Grp )
3938adantr 481 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  D  e.  Grp )
40 simpr1 1067 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( 2nd `  F
)  e.  E )
41 eqid 2622 . . . . . . . . 9  |-  ( Base `  D )  =  (
Base `  D )
422, 4, 5, 6, 41dvhbase 36372 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  D
)  =  E )
4342adantr 481 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( Base `  D
)  =  E )
4440, 43eleqtrrd 2704 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( 2nd `  F
)  e.  ( Base `  D ) )
45 simpr2 1068 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( 2nd `  G
)  e.  E )
4645, 43eleqtrrd 2704 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( 2nd `  G
)  e.  ( Base `  D ) )
47 simpr3 1069 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( 2nd `  I
)  e.  E )
4847, 43eleqtrrd 2704 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( 2nd `  I
)  e.  ( Base `  D ) )
4941, 8grpass 17431 . . . . . 6  |-  ( ( D  e.  Grp  /\  ( ( 2nd `  F
)  e.  ( Base `  D )  /\  ( 2nd `  G )  e.  ( Base `  D
)  /\  ( 2nd `  I )  e.  (
Base `  D )
) )  ->  (
( ( 2nd `  F
)  .+^  ( 2nd `  G
) )  .+^  ( 2nd `  I ) )  =  ( ( 2nd `  F
)  .+^  ( ( 2nd `  G )  .+^  ( 2nd `  I ) ) ) )
5039, 44, 46, 48, 49syl13anc 1328 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( ( ( 2nd `  F ) 
.+^  ( 2nd `  G
) )  .+^  ( 2nd `  I ) )  =  ( ( 2nd `  F
)  .+^  ( ( 2nd `  G )  .+^  ( 2nd `  I ) ) ) )
5132, 50sylan2 491 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( ( 2nd `  F )  .+^  ( 2nd `  G ) )  .+^  ( 2nd `  I ) )  =  ( ( 2nd `  F ) 
.+^  ( ( 2nd `  G )  .+^  ( 2nd `  I ) ) ) )
5210fveq2d 6195 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 2nd `  ( F  .+  G ) )  =  ( 2nd `  <. ( ( 1st `  F
)  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  G
) ) >. )
)
5314, 15op2nd 7177 . . . . . 6  |-  ( 2nd `  <. ( ( 1st `  F )  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F )  .+^  ( 2nd `  G ) ) >.
)  =  ( ( 2nd `  F ) 
.+^  ( 2nd `  G
) )
5452, 53syl6eq 2672 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 2nd `  ( F  .+  G ) )  =  ( ( 2nd `  F )  .+^  ( 2nd `  G ) ) )
5554oveq1d 6665 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( 2nd `  ( F  .+  G ) ) 
.+^  ( 2nd `  I
) )  =  ( ( ( 2nd `  F
)  .+^  ( 2nd `  G
) )  .+^  ( 2nd `  I ) ) )
5620fveq2d 6195 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 2nd `  ( G  .+  I ) )  =  ( 2nd `  <. ( ( 1st `  G
)  o.  ( 1st `  I ) ) ,  ( ( 2nd `  G
)  .+^  ( 2nd `  I
) ) >. )
)
5723, 24op2nd 7177 . . . . . 6  |-  ( 2nd `  <. ( ( 1st `  G )  o.  ( 1st `  I ) ) ,  ( ( 2nd `  G )  .+^  ( 2nd `  I ) ) >.
)  =  ( ( 2nd `  G ) 
.+^  ( 2nd `  I
) )
5856, 57syl6eq 2672 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 2nd `  ( G  .+  I ) )  =  ( ( 2nd `  G )  .+^  ( 2nd `  I ) ) )
5958oveq2d 6666 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( 2nd `  F
)  .+^  ( 2nd `  ( G  .+  I ) ) )  =  ( ( 2nd `  F ) 
.+^  ( ( 2nd `  G )  .+^  ( 2nd `  I ) ) ) )
6051, 55, 593eqtr4d 2666 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( 2nd `  ( F  .+  G ) ) 
.+^  ( 2nd `  I
) )  =  ( ( 2nd `  F
)  .+^  ( 2nd `  ( G  .+  I ) ) ) )
6128, 60opeq12d 4410 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  ->  <. ( ( 1st `  ( F  .+  G ) )  o.  ( 1st `  I
) ) ,  ( ( 2nd `  ( F  .+  G ) ) 
.+^  ( 2nd `  I
) ) >.  =  <. ( ( 1st `  F
)  o.  ( 1st `  ( G  .+  I
) ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  ( G  .+  I ) ) ) >. )
62 simpl 473 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
632, 3, 4, 5, 6, 8, 7dvhvaddcl 36384 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
) ) )  -> 
( F  .+  G
)  e.  ( T  X.  E ) )
64633adantr3 1222 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( F  .+  G
)  e.  ( T  X.  E ) )
65 simpr3 1069 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  ->  I  e.  ( T  X.  E ) )
662, 3, 4, 5, 6, 7, 8dvhvadd 36381 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F 
.+  G )  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( F  .+  G )  .+  I
)  =  <. (
( 1st `  ( F  .+  G ) )  o.  ( 1st `  I
) ) ,  ( ( 2nd `  ( F  .+  G ) ) 
.+^  ( 2nd `  I
) ) >. )
6762, 64, 65, 66syl12anc 1324 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( F  .+  G )  .+  I
)  =  <. (
( 1st `  ( F  .+  G ) )  o.  ( 1st `  I
) ) ,  ( ( 2nd `  ( F  .+  G ) ) 
.+^  ( 2nd `  I
) ) >. )
68 simpr1 1067 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  ->  F  e.  ( T  X.  E ) )
692, 3, 4, 5, 6, 8, 7dvhvaddcl 36384 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( G  .+  I
)  e.  ( T  X.  E ) )
70693adantr1 1220 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( G  .+  I
)  e.  ( T  X.  E ) )
712, 3, 4, 5, 6, 7, 8dvhvadd 36381 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  ( G  .+  I )  e.  ( T  X.  E ) ) )  ->  ( F  .+  ( G  .+  I ) )  = 
<. ( ( 1st `  F
)  o.  ( 1st `  ( G  .+  I
) ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  ( G  .+  I ) ) ) >. )
7262, 68, 70, 71syl12anc 1324 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( F  .+  ( G  .+  I ) )  =  <. ( ( 1st `  F )  o.  ( 1st `  ( G  .+  I ) ) ) ,  ( ( 2nd `  F )  .+^  ( 2nd `  ( G  .+  I
) ) ) >.
)
7361, 67, 723eqtr4d 2666 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( F  .+  G )  .+  I
)  =  ( F 
.+  ( G  .+  I ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   <.cop 4183    X. cxp 5112    o. ccom 5118   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   +g cplusg 15941  Scalarcsca 15944   Grpcgrp 17422   DivRingcdr 18747   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   TEndoctendo 36040   EDRingcedring 36041   DVecHcdvh 36367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-undef 7399  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tendo 36043  df-edring 36045  df-dvech 36368
This theorem is referenced by:  dvhgrp  36396
  Copyright terms: Public domain W3C validator