| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldioph2lem2 | Structured version Visualization version Unicode version | ||
| Description: Lemma for eldioph2 37325. Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| eldioph2lem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 792 |
. . . 4
| |
| 2 | fzfi 12771 |
. . . 4
| |
| 3 | difinf 8230 |
. . . 4
| |
| 4 | 1, 2, 3 | sylancl 694 |
. . 3
|
| 5 | fzfi 12771 |
. . . 4
| |
| 6 | diffi 8192 |
. . . 4
| |
| 7 | 5, 6 | ax-mp 5 |
. . 3
|
| 8 | isinffi 8818 |
. . 3
| |
| 9 | 4, 7, 8 | sylancl 694 |
. 2
|
| 10 | f1f1orn 6148 |
. . . . . . . 8
| |
| 11 | 10 | adantl 482 |
. . . . . . 7
|
| 12 | f1oi 6174 |
. . . . . . . 8
| |
| 13 | 12 | a1i 11 |
. . . . . . 7
|
| 14 | incom 3805 |
. . . . . . . . 9
| |
| 15 | disjdif 4040 |
. . . . . . . . 9
| |
| 16 | 14, 15 | eqtri 2644 |
. . . . . . . 8
|
| 17 | 16 | a1i 11 |
. . . . . . 7
|
| 18 | f1f 6101 |
. . . . . . . . . . . 12
| |
| 19 | frn 6053 |
. . . . . . . . . . . 12
| |
| 20 | 18, 19 | syl 17 |
. . . . . . . . . . 11
|
| 21 | 20 | adantl 482 |
. . . . . . . . . 10
|
| 22 | ssrin 3838 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | syl 17 |
. . . . . . . . 9
|
| 24 | incom 3805 |
. . . . . . . . . 10
| |
| 25 | disjdif 4040 |
. . . . . . . . . 10
| |
| 26 | 24, 25 | eqtri 2644 |
. . . . . . . . 9
|
| 27 | 23, 26 | syl6sseq 3651 |
. . . . . . . 8
|
| 28 | ss0 3974 |
. . . . . . . 8
| |
| 29 | 27, 28 | syl 17 |
. . . . . . 7
|
| 30 | f1oun 6156 |
. . . . . . 7
| |
| 31 | 11, 13, 17, 29, 30 | syl22anc 1327 |
. . . . . 6
|
| 32 | f1of1 6136 |
. . . . . 6
| |
| 33 | 31, 32 | syl 17 |
. . . . 5
|
| 34 | uncom 3757 |
. . . . . . 7
| |
| 35 | simplrr 801 |
. . . . . . . . 9
| |
| 36 | fzss2 12381 |
. . . . . . . . 9
| |
| 37 | 35, 36 | syl 17 |
. . . . . . . 8
|
| 38 | undif 4049 |
. . . . . . . 8
| |
| 39 | 37, 38 | sylib 208 |
. . . . . . 7
|
| 40 | 34, 39 | syl5eq 2668 |
. . . . . 6
|
| 41 | f1eq2 6097 |
. . . . . 6
| |
| 42 | 40, 41 | syl 17 |
. . . . 5
|
| 43 | 33, 42 | mpbid 222 |
. . . 4
|
| 44 | 20 | difss2d 3740 |
. . . . . 6
|
| 45 | 44 | adantl 482 |
. . . . 5
|
| 46 | simplrl 800 |
. . . . 5
| |
| 47 | 45, 46 | unssd 3789 |
. . . 4
|
| 48 | f1ss 6106 |
. . . 4
| |
| 49 | 43, 47, 48 | syl2anc 693 |
. . 3
|
| 50 | resundir 5411 |
. . . 4
| |
| 51 | dmres 5419 |
. . . . . . . 8
| |
| 52 | incom 3805 |
. . . . . . . . 9
| |
| 53 | f1dm 6105 |
. . . . . . . . . . . 12
| |
| 54 | 53 | adantl 482 |
. . . . . . . . . . 11
|
| 55 | 54 | ineq1d 3813 |
. . . . . . . . . 10
|
| 56 | 55, 16 | syl6eq 2672 |
. . . . . . . . 9
|
| 57 | 52, 56 | syl5eq 2668 |
. . . . . . . 8
|
| 58 | 51, 57 | syl5eq 2668 |
. . . . . . 7
|
| 59 | relres 5426 |
. . . . . . . 8
| |
| 60 | reldm0 5343 |
. . . . . . . 8
| |
| 61 | 59, 60 | ax-mp 5 |
. . . . . . 7
|
| 62 | 58, 61 | sylibr 224 |
. . . . . 6
|
| 63 | residm 5430 |
. . . . . . 7
| |
| 64 | 63 | a1i 11 |
. . . . . 6
|
| 65 | 62, 64 | uneq12d 3768 |
. . . . 5
|
| 66 | uncom 3757 |
. . . . . 6
| |
| 67 | un0 3967 |
. . . . . 6
| |
| 68 | 66, 67 | eqtri 2644 |
. . . . 5
|
| 69 | 65, 68 | syl6eq 2672 |
. . . 4
|
| 70 | 50, 69 | syl5eq 2668 |
. . 3
|
| 71 | vex 3203 |
. . . . 5
| |
| 72 | ovex 6678 |
. . . . . 6
| |
| 73 | resiexg 7102 |
. . . . . 6
| |
| 74 | 72, 73 | ax-mp 5 |
. . . . 5
|
| 75 | 71, 74 | unex 6956 |
. . . 4
|
| 76 | f1eq1 6096 |
. . . . 5
| |
| 77 | reseq1 5390 |
. . . . . 6
| |
| 78 | 77 | eqeq1d 2624 |
. . . . 5
|
| 79 | 76, 78 | anbi12d 747 |
. . . 4
|
| 80 | 75, 79 | spcev 3300 |
. . 3
|
| 81 | 49, 70, 80 | syl2anc 693 |
. 2
|
| 82 | 9, 81 | exlimddv 1863 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 |
| This theorem is referenced by: eldioph2b 37326 |
| Copyright terms: Public domain | W3C validator |