Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem10 Structured version   Visualization version   Unicode version

Theorem erdszelem10 31182
Description: Lemma for erdsze 31184. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n  |-  ( ph  ->  N  e.  NN )
erdsze.f  |-  ( ph  ->  F : ( 1 ... N ) -1-1-> RR )
erdszelem.i  |-  I  =  ( x  e.  ( 1 ... N ) 
|->  sup ( ( # " { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  <  (
y ,  ( F
" y ) )  /\  x  e.  y ) } ) ,  RR ,  <  )
)
erdszelem.j  |-  J  =  ( x  e.  ( 1 ... N ) 
|->  sup ( ( # " { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F
" y ) )  /\  x  e.  y ) } ) ,  RR ,  <  )
)
erdszelem.t  |-  T  =  ( n  e.  ( 1 ... N ) 
|->  <. ( I `  n ) ,  ( J `  n )
>. )
erdszelem.r  |-  ( ph  ->  R  e.  NN )
erdszelem.s  |-  ( ph  ->  S  e.  NN )
erdszelem.m  |-  ( ph  ->  ( ( R  - 
1 )  x.  ( S  -  1 ) )  <  N )
Assertion
Ref Expression
erdszelem10  |-  ( ph  ->  E. m  e.  ( 1 ... N ) ( -.  ( I `
 m )  e.  ( 1 ... ( R  -  1 ) )  \/  -.  ( J `  m )  e.  ( 1 ... ( S  -  1 ) ) ) )
Distinct variable groups:    x, y    m, n, x, y, F   
n, I, x, y   
n, J, x, y    R, m, x, y    m, N, n, x, y    ph, m, n, x, y    S, m, x, y    T, m
Allowed substitution hints:    R( n)    S( n)    T( x, y, n)    I( m)    J( m)

Proof of Theorem erdszelem10
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 fzfi 12771 . . . . . . . 8  |-  ( 1 ... ( R  - 
1 ) )  e. 
Fin
2 fzfi 12771 . . . . . . . 8  |-  ( 1 ... ( S  - 
1 ) )  e. 
Fin
3 xpfi 8231 . . . . . . . 8  |-  ( ( ( 1 ... ( R  -  1 ) )  e.  Fin  /\  ( 1 ... ( S  -  1 ) )  e.  Fin )  ->  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) )  e.  Fin )
41, 2, 3mp2an 708 . . . . . . 7  |-  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  -  1 ) ) )  e. 
Fin
5 ssdomg 8001 . . . . . . 7  |-  ( ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  - 
1 ) ) )  e.  Fin  ->  ( ran  T  C_  ( (
1 ... ( R  - 
1 ) )  X.  ( 1 ... ( S  -  1 ) ) )  ->  ran  T  ~<_  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) ) ) )
64, 5ax-mp 5 . . . . . 6  |-  ( ran 
T  C_  ( (
1 ... ( R  - 
1 ) )  X.  ( 1 ... ( S  -  1 ) ) )  ->  ran  T  ~<_  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) ) )
7 domnsym 8086 . . . . . 6  |-  ( ran 
T  ~<_  ( ( 1 ... ( R  - 
1 ) )  X.  ( 1 ... ( S  -  1 ) ) )  ->  -.  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) ) 
~<  ran  T )
86, 7syl 17 . . . . 5  |-  ( ran 
T  C_  ( (
1 ... ( R  - 
1 ) )  X.  ( 1 ... ( S  -  1 ) ) )  ->  -.  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) ) 
~<  ran  T )
9 erdszelem.m . . . . . . . 8  |-  ( ph  ->  ( ( R  - 
1 )  x.  ( S  -  1 ) )  <  N )
10 hashxp 13221 . . . . . . . . . 10  |-  ( ( ( 1 ... ( R  -  1 ) )  e.  Fin  /\  ( 1 ... ( S  -  1 ) )  e.  Fin )  ->  ( # `  (
( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  - 
1 ) ) ) )  =  ( (
# `  ( 1 ... ( R  -  1 ) ) )  x.  ( # `  (
1 ... ( S  - 
1 ) ) ) ) )
111, 2, 10mp2an 708 . . . . . . . . 9  |-  ( # `  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) ) )  =  ( (
# `  ( 1 ... ( R  -  1 ) ) )  x.  ( # `  (
1 ... ( S  - 
1 ) ) ) )
12 erdszelem.r . . . . . . . . . . 11  |-  ( ph  ->  R  e.  NN )
13 nnm1nn0 11334 . . . . . . . . . . 11  |-  ( R  e.  NN  ->  ( R  -  1 )  e.  NN0 )
14 hashfz1 13134 . . . . . . . . . . 11  |-  ( ( R  -  1 )  e.  NN0  ->  ( # `  ( 1 ... ( R  -  1 ) ) )  =  ( R  -  1 ) )
1512, 13, 143syl 18 . . . . . . . . . 10  |-  ( ph  ->  ( # `  (
1 ... ( R  - 
1 ) ) )  =  ( R  - 
1 ) )
16 erdszelem.s . . . . . . . . . . 11  |-  ( ph  ->  S  e.  NN )
17 nnm1nn0 11334 . . . . . . . . . . 11  |-  ( S  e.  NN  ->  ( S  -  1 )  e.  NN0 )
18 hashfz1 13134 . . . . . . . . . . 11  |-  ( ( S  -  1 )  e.  NN0  ->  ( # `  ( 1 ... ( S  -  1 ) ) )  =  ( S  -  1 ) )
1916, 17, 183syl 18 . . . . . . . . . 10  |-  ( ph  ->  ( # `  (
1 ... ( S  - 
1 ) ) )  =  ( S  - 
1 ) )
2015, 19oveq12d 6668 . . . . . . . . 9  |-  ( ph  ->  ( ( # `  (
1 ... ( R  - 
1 ) ) )  x.  ( # `  (
1 ... ( S  - 
1 ) ) ) )  =  ( ( R  -  1 )  x.  ( S  - 
1 ) ) )
2111, 20syl5eq 2668 . . . . . . . 8  |-  ( ph  ->  ( # `  (
( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  - 
1 ) ) ) )  =  ( ( R  -  1 )  x.  ( S  - 
1 ) ) )
22 erdsze.n . . . . . . . . . 10  |-  ( ph  ->  N  e.  NN )
2322nnnn0d 11351 . . . . . . . . 9  |-  ( ph  ->  N  e.  NN0 )
24 hashfz1 13134 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( # `  ( 1 ... N
) )  =  N )
2523, 24syl 17 . . . . . . . 8  |-  ( ph  ->  ( # `  (
1 ... N ) )  =  N )
269, 21, 253brtr4d 4685 . . . . . . 7  |-  ( ph  ->  ( # `  (
( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  - 
1 ) ) ) )  <  ( # `  ( 1 ... N
) ) )
27 fzfid 12772 . . . . . . . 8  |-  ( ph  ->  ( 1 ... N
)  e.  Fin )
28 hashsdom 13170 . . . . . . . 8  |-  ( ( ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) )  e.  Fin  /\  (
1 ... N )  e. 
Fin )  ->  (
( # `  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  -  1 ) ) ) )  <  ( # `  (
1 ... N ) )  <-> 
( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) ) 
~<  ( 1 ... N
) ) )
294, 27, 28sylancr 695 . . . . . . 7  |-  ( ph  ->  ( ( # `  (
( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  - 
1 ) ) ) )  <  ( # `  ( 1 ... N
) )  <->  ( (
1 ... ( R  - 
1 ) )  X.  ( 1 ... ( S  -  1 ) ) )  ~<  (
1 ... N ) ) )
3026, 29mpbid 222 . . . . . 6  |-  ( ph  ->  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) ) 
~<  ( 1 ... N
) )
31 erdsze.f . . . . . . . 8  |-  ( ph  ->  F : ( 1 ... N ) -1-1-> RR )
32 erdszelem.i . . . . . . . 8  |-  I  =  ( x  e.  ( 1 ... N ) 
|->  sup ( ( # " { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  <  (
y ,  ( F
" y ) )  /\  x  e.  y ) } ) ,  RR ,  <  )
)
33 erdszelem.j . . . . . . . 8  |-  J  =  ( x  e.  ( 1 ... N ) 
|->  sup ( ( # " { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F
" y ) )  /\  x  e.  y ) } ) ,  RR ,  <  )
)
34 erdszelem.t . . . . . . . 8  |-  T  =  ( n  e.  ( 1 ... N ) 
|->  <. ( I `  n ) ,  ( J `  n )
>. )
3522, 31, 32, 33, 34erdszelem9 31181 . . . . . . 7  |-  ( ph  ->  T : ( 1 ... N ) -1-1-> ( NN  X.  NN ) )
36 f1f1orn 6148 . . . . . . 7  |-  ( T : ( 1 ... N ) -1-1-> ( NN 
X.  NN )  ->  T : ( 1 ... N ) -1-1-onto-> ran  T )
37 ovex 6678 . . . . . . . 8  |-  ( 1 ... N )  e. 
_V
3837f1oen 7976 . . . . . . 7  |-  ( T : ( 1 ... N ) -1-1-onto-> ran  T  ->  (
1 ... N )  ~~  ran  T )
3935, 36, 383syl 18 . . . . . 6  |-  ( ph  ->  ( 1 ... N
)  ~~  ran  T )
40 sdomentr 8094 . . . . . 6  |-  ( ( ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) ) 
~<  ( 1 ... N
)  /\  ( 1 ... N )  ~~  ran  T )  ->  (
( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  - 
1 ) ) ) 
~<  ran  T )
4130, 39, 40syl2anc 693 . . . . 5  |-  ( ph  ->  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) ) 
~<  ran  T )
428, 41nsyl3 133 . . . 4  |-  ( ph  ->  -.  ran  T  C_  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) ) )
43 nss 3663 . . . . 5  |-  ( -. 
ran  T  C_  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  -  1 ) ) )  <->  E. s
( s  e.  ran  T  /\  -.  s  e.  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) ) ) )
44 df-rex 2918 . . . . 5  |-  ( E. s  e.  ran  T  -.  s  e.  (
( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  - 
1 ) ) )  <->  E. s ( s  e. 
ran  T  /\  -.  s  e.  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) ) ) )
4543, 44bitr4i 267 . . . 4  |-  ( -. 
ran  T  C_  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  -  1 ) ) )  <->  E. s  e.  ran  T  -.  s  e.  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) ) )
4642, 45sylib 208 . . 3  |-  ( ph  ->  E. s  e.  ran  T  -.  s  e.  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  - 
1 ) ) ) )
47 f1fn 6102 . . . 4  |-  ( T : ( 1 ... N ) -1-1-> ( NN 
X.  NN )  ->  T  Fn  ( 1 ... N ) )
48 eleq1 2689 . . . . . 6  |-  ( s  =  ( T `  m )  ->  (
s  e.  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  -  1 ) ) )  <->  ( T `  m )  e.  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  - 
1 ) ) ) ) )
4948notbid 308 . . . . 5  |-  ( s  =  ( T `  m )  ->  ( -.  s  e.  (
( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  - 
1 ) ) )  <->  -.  ( T `  m
)  e.  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  -  1 ) ) ) ) )
5049rexrn 6361 . . . 4  |-  ( T  Fn  ( 1 ... N )  ->  ( E. s  e.  ran  T  -.  s  e.  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  - 
1 ) ) )  <->  E. m  e.  (
1 ... N )  -.  ( T `  m
)  e.  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  -  1 ) ) ) ) )
5135, 47, 503syl 18 . . 3  |-  ( ph  ->  ( E. s  e. 
ran  T  -.  s  e.  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) )  <->  E. m  e.  (
1 ... N )  -.  ( T `  m
)  e.  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  -  1 ) ) ) ) )
5246, 51mpbid 222 . 2  |-  ( ph  ->  E. m  e.  ( 1 ... N )  -.  ( T `  m )  e.  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  - 
1 ) ) ) )
53 fveq2 6191 . . . . . . . . . 10  |-  ( n  =  m  ->  (
I `  n )  =  ( I `  m ) )
54 fveq2 6191 . . . . . . . . . 10  |-  ( n  =  m  ->  ( J `  n )  =  ( J `  m ) )
5553, 54opeq12d 4410 . . . . . . . . 9  |-  ( n  =  m  ->  <. (
I `  n ) ,  ( J `  n ) >.  =  <. ( I `  m ) ,  ( J `  m ) >. )
56 opex 4932 . . . . . . . . 9  |-  <. (
I `  m ) ,  ( J `  m ) >.  e.  _V
5755, 34, 56fvmpt 6282 . . . . . . . 8  |-  ( m  e.  ( 1 ... N )  ->  ( T `  m )  =  <. ( I `  m ) ,  ( J `  m )
>. )
5857adantl 482 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 1 ... N
) )  ->  ( T `  m )  =  <. ( I `  m ) ,  ( J `  m )
>. )
5958eleq1d 2686 . . . . . 6  |-  ( (
ph  /\  m  e.  ( 1 ... N
) )  ->  (
( T `  m
)  e.  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  -  1 ) ) )  <->  <. ( I `
 m ) ,  ( J `  m
) >.  e.  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  -  1 ) ) ) ) )
60 opelxp 5146 . . . . . 6  |-  ( <.
( I `  m
) ,  ( J `
 m ) >.  e.  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) )  <-> 
( ( I `  m )  e.  ( 1 ... ( R  -  1 ) )  /\  ( J `  m )  e.  ( 1 ... ( S  -  1 ) ) ) )
6159, 60syl6bb 276 . . . . 5  |-  ( (
ph  /\  m  e.  ( 1 ... N
) )  ->  (
( T `  m
)  e.  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  -  1 ) ) )  <->  ( (
I `  m )  e.  ( 1 ... ( R  -  1 ) )  /\  ( J `
 m )  e.  ( 1 ... ( S  -  1 ) ) ) ) )
6261notbid 308 . . . 4  |-  ( (
ph  /\  m  e.  ( 1 ... N
) )  ->  ( -.  ( T `  m
)  e.  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  -  1 ) ) )  <->  -.  (
( I `  m
)  e.  ( 1 ... ( R  - 
1 ) )  /\  ( J `  m )  e.  ( 1 ... ( S  -  1 ) ) ) ) )
63 ianor 509 . . . 4  |-  ( -.  ( ( I `  m )  e.  ( 1 ... ( R  -  1 ) )  /\  ( J `  m )  e.  ( 1 ... ( S  -  1 ) ) )  <->  ( -.  (
I `  m )  e.  ( 1 ... ( R  -  1 ) )  \/  -.  ( J `  m )  e.  ( 1 ... ( S  -  1 ) ) ) )
6462, 63syl6bb 276 . . 3  |-  ( (
ph  /\  m  e.  ( 1 ... N
) )  ->  ( -.  ( T `  m
)  e.  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  -  1 ) ) )  <->  ( -.  ( I `  m
)  e.  ( 1 ... ( R  - 
1 ) )  \/ 
-.  ( J `  m )  e.  ( 1 ... ( S  -  1 ) ) ) ) )
6564rexbidva 3049 . 2  |-  ( ph  ->  ( E. m  e.  ( 1 ... N
)  -.  ( T `
 m )  e.  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) )  <->  E. m  e.  (
1 ... N ) ( -.  ( I `  m )  e.  ( 1 ... ( R  -  1 ) )  \/  -.  ( J `
 m )  e.  ( 1 ... ( S  -  1 ) ) ) ) )
6652, 65mpbid 222 1  |-  ( ph  ->  E. m  e.  ( 1 ... N ) ( -.  ( I `
 m )  e.  ( 1 ... ( R  -  1 ) )  \/  -.  ( J `  m )  e.  ( 1 ... ( S  -  1 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   {crab 2916    C_ wss 3574   ~Pcpw 4158   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   ran crn 5115    |` cres 5116   "cima 5117    Fn wfn 5883   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889  (class class class)co 6650    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954   Fincfn 7955   supcsup 8346   RRcr 9935   1c1 9937    x. cmul 9941    < clt 10074    - cmin 10266   NNcn 11020   NN0cn0 11292   ...cfz 12326   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  erdszelem11  31183
  Copyright terms: Public domain W3C validator