MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facwordi Structured version   Visualization version   Unicode version

Theorem facwordi 13076
Description: Ordering property of factorial. (Contributed by NM, 9-Dec-2005.)
Assertion
Ref Expression
facwordi  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( ! `  M )  <_  ( ! `  N
) )

Proof of Theorem facwordi
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4657 . . . . . 6  |-  ( j  =  0  ->  ( M  <_  j  <->  M  <_  0 ) )
21anbi2d 740 . . . . 5  |-  ( j  =  0  ->  (
( M  e.  NN0  /\  M  <_  j )  <->  ( M  e.  NN0  /\  M  <_  0 ) ) )
3 fveq2 6191 . . . . . 6  |-  ( j  =  0  ->  ( ! `  j )  =  ( ! ` 
0 ) )
43breq2d 4665 . . . . 5  |-  ( j  =  0  ->  (
( ! `  M
)  <_  ( ! `  j )  <->  ( ! `  M )  <_  ( ! `  0 )
) )
52, 4imbi12d 334 . . . 4  |-  ( j  =  0  ->  (
( ( M  e. 
NN0  /\  M  <_  j )  ->  ( ! `  M )  <_  ( ! `  j )
)  <->  ( ( M  e.  NN0  /\  M  <_ 
0 )  ->  ( ! `  M )  <_  ( ! `  0
) ) ) )
6 breq2 4657 . . . . . 6  |-  ( j  =  k  ->  ( M  <_  j  <->  M  <_  k ) )
76anbi2d 740 . . . . 5  |-  ( j  =  k  ->  (
( M  e.  NN0  /\  M  <_  j )  <->  ( M  e.  NN0  /\  M  <_  k ) ) )
8 fveq2 6191 . . . . . 6  |-  ( j  =  k  ->  ( ! `  j )  =  ( ! `  k ) )
98breq2d 4665 . . . . 5  |-  ( j  =  k  ->  (
( ! `  M
)  <_  ( ! `  j )  <->  ( ! `  M )  <_  ( ! `  k )
) )
107, 9imbi12d 334 . . . 4  |-  ( j  =  k  ->  (
( ( M  e. 
NN0  /\  M  <_  j )  ->  ( ! `  M )  <_  ( ! `  j )
)  <->  ( ( M  e.  NN0  /\  M  <_ 
k )  ->  ( ! `  M )  <_  ( ! `  k
) ) ) )
11 breq2 4657 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  ( M  <_  j  <->  M  <_  ( k  +  1 ) ) )
1211anbi2d 740 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( M  e.  NN0  /\  M  <_  j )  <->  ( M  e.  NN0  /\  M  <_  ( k  +  1 ) ) ) )
13 fveq2 6191 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  ( ! `  j )  =  ( ! `  ( k  +  1 ) ) )
1413breq2d 4665 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( ! `  M
)  <_  ( ! `  j )  <->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) )
1512, 14imbi12d 334 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( ( M  e. 
NN0  /\  M  <_  j )  ->  ( ! `  M )  <_  ( ! `  j )
)  <->  ( ( M  e.  NN0  /\  M  <_ 
( k  +  1 ) )  ->  ( ! `  M )  <_  ( ! `  (
k  +  1 ) ) ) ) )
16 breq2 4657 . . . . . 6  |-  ( j  =  N  ->  ( M  <_  j  <->  M  <_  N ) )
1716anbi2d 740 . . . . 5  |-  ( j  =  N  ->  (
( M  e.  NN0  /\  M  <_  j )  <->  ( M  e.  NN0  /\  M  <_  N ) ) )
18 fveq2 6191 . . . . . 6  |-  ( j  =  N  ->  ( ! `  j )  =  ( ! `  N ) )
1918breq2d 4665 . . . . 5  |-  ( j  =  N  ->  (
( ! `  M
)  <_  ( ! `  j )  <->  ( ! `  M )  <_  ( ! `  N )
) )
2017, 19imbi12d 334 . . . 4  |-  ( j  =  N  ->  (
( ( M  e. 
NN0  /\  M  <_  j )  ->  ( ! `  M )  <_  ( ! `  j )
)  <->  ( ( M  e.  NN0  /\  M  <_  N )  ->  ( ! `  M )  <_  ( ! `  N
) ) ) )
21 nn0le0eq0 11321 . . . . . . 7  |-  ( M  e.  NN0  ->  ( M  <_  0  <->  M  = 
0 ) )
2221biimpa 501 . . . . . 6  |-  ( ( M  e.  NN0  /\  M  <_  0 )  ->  M  =  0 )
2322fveq2d 6195 . . . . 5  |-  ( ( M  e.  NN0  /\  M  <_  0 )  -> 
( ! `  M
)  =  ( ! `
 0 ) )
24 fac0 13063 . . . . . . 7  |-  ( ! `
 0 )  =  1
25 1re 10039 . . . . . . 7  |-  1  e.  RR
2624, 25eqeltri 2697 . . . . . 6  |-  ( ! `
 0 )  e.  RR
2726leidi 10562 . . . . 5  |-  ( ! `
 0 )  <_ 
( ! `  0
)
2823, 27syl6eqbr 4692 . . . 4  |-  ( ( M  e.  NN0  /\  M  <_  0 )  -> 
( ! `  M
)  <_  ( ! `  0 ) )
29 impexp 462 . . . . 5  |-  ( ( ( M  e.  NN0  /\  M  <_  k )  ->  ( ! `  M
)  <_  ( ! `  k ) )  <->  ( M  e.  NN0  ->  ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  k )
) ) )
30 nn0re 11301 . . . . . . . . . . . 12  |-  ( M  e.  NN0  ->  M  e.  RR )
31 nn0re 11301 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  k  e.  RR )
32 peano2re 10209 . . . . . . . . . . . . 13  |-  ( k  e.  RR  ->  (
k  +  1 )  e.  RR )
3331, 32syl 17 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  RR )
34 leloe 10124 . . . . . . . . . . . 12  |-  ( ( M  e.  RR  /\  ( k  +  1 )  e.  RR )  ->  ( M  <_ 
( k  +  1 )  <->  ( M  < 
( k  +  1 )  \/  M  =  ( k  +  1 ) ) ) )
3530, 33, 34syl2an 494 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  <_  (
k  +  1 )  <-> 
( M  <  (
k  +  1 )  \/  M  =  ( k  +  1 ) ) ) )
36 nn0leltp1 11436 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  <_  k  <->  M  <  ( k  +  1 ) ) )
37 faccl 13070 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
3837nnred 11035 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  RR )
3937nnnn0d 11351 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  NN0  ->  ( ! `
 k )  e. 
NN0 )
4039nn0ge0d 11354 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  0  <_ 
( ! `  k
) )
41 nn0p1nn 11332 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  NN )
4241nnge1d 11063 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  1  <_ 
( k  +  1 ) )
4338, 33, 40, 42lemulge11d 10961 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN0  ->  ( ! `
 k )  <_ 
( ( ! `  k )  x.  (
k  +  1 ) ) )
44 facp1 13065 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  =  ( ( ! `  k )  x.  (
k  +  1 ) ) )
4543, 44breqtrrd 4681 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  ( ! `
 k )  <_ 
( ! `  (
k  +  1 ) ) )
4645adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  k
)  <_  ( ! `  ( k  +  1 ) ) )
47 faccl 13070 . . . . . . . . . . . . . . . . . . 19  |-  ( M  e.  NN0  ->  ( ! `
 M )  e.  NN )
4847nnred 11035 . . . . . . . . . . . . . . . . . 18  |-  ( M  e.  NN0  ->  ( ! `
 M )  e.  RR )
4948adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  M
)  e.  RR )
5038adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  k
)  e.  RR )
51 peano2nn0 11333 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
5251faccld 13071 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  e.  NN )
5352nnred 11035 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  e.  RR )
5453adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  (
k  +  1 ) )  e.  RR )
55 letr 10131 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ! `  M
)  e.  RR  /\  ( ! `  k )  e.  RR  /\  ( ! `  ( k  +  1 ) )  e.  RR )  -> 
( ( ( ! `
 M )  <_ 
( ! `  k
)  /\  ( ! `  k )  <_  ( ! `  ( k  +  1 ) ) )  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) )
5649, 50, 54, 55syl3anc 1326 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ! `
 M )  <_ 
( ! `  k
)  /\  ( ! `  k )  <_  ( ! `  ( k  +  1 ) ) )  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) )
5746, 56mpan2d 710 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ! `  M )  <_  ( ! `  k )  ->  ( ! `  M
)  <_  ( ! `  ( k  +  1 ) ) ) )
5857imim2d 57 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ( M  <_ 
k  ->  ( ! `  M )  <_  ( ! `  k )
)  ->  ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) ) )
5958com23 86 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  <_  k  ->  ( ( M  <_ 
k  ->  ( ! `  M )  <_  ( ! `  k )
)  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) ) )
6036, 59sylbird 250 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  <  (
k  +  1 )  ->  ( ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  k
) )  ->  ( ! `  M )  <_  ( ! `  (
k  +  1 ) ) ) ) )
61 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( M  =  ( k  +  1 )  ->  ( ! `  M )  =  ( ! `  ( k  +  1 ) ) )
6248leidd 10594 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN0  ->  ( ! `
 M )  <_ 
( ! `  M
) )
63 breq2 4657 . . . . . . . . . . . . . . . 16  |-  ( ( ! `  M )  =  ( ! `  ( k  +  1 ) )  ->  (
( ! `  M
)  <_  ( ! `  M )  <->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) )
6462, 63syl5ibcom 235 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN0  ->  ( ( ! `  M )  =  ( ! `  ( k  +  1 ) )  ->  ( ! `  M )  <_  ( ! `  (
k  +  1 ) ) ) )
6561, 64syl5 34 . . . . . . . . . . . . . 14  |-  ( M  e.  NN0  ->  ( M  =  ( k  +  1 )  ->  ( ! `  M )  <_  ( ! `  (
k  +  1 ) ) ) )
6665adantr 481 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  =  ( k  +  1 )  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) )
6766a1dd 50 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  =  ( k  +  1 )  ->  ( ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  k
) )  ->  ( ! `  M )  <_  ( ! `  (
k  +  1 ) ) ) ) )
6860, 67jaod 395 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ( M  < 
( k  +  1 )  \/  M  =  ( k  +  1 ) )  ->  (
( M  <_  k  ->  ( ! `  M
)  <_  ( ! `  k ) )  -> 
( ! `  M
)  <_  ( ! `  ( k  +  1 ) ) ) ) )
6935, 68sylbid 230 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  <_  (
k  +  1 )  ->  ( ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  k
) )  ->  ( ! `  M )  <_  ( ! `  (
k  +  1 ) ) ) ) )
7069ex 450 . . . . . . . . 9  |-  ( M  e.  NN0  ->  ( k  e.  NN0  ->  ( M  <_  ( k  +  1 )  ->  (
( M  <_  k  ->  ( ! `  M
)  <_  ( ! `  k ) )  -> 
( ! `  M
)  <_  ( ! `  ( k  +  1 ) ) ) ) ) )
7170com13 88 . . . . . . . 8  |-  ( M  <_  ( k  +  1 )  ->  (
k  e.  NN0  ->  ( M  e.  NN0  ->  ( ( M  <_  k  ->  ( ! `  M
)  <_  ( ! `  k ) )  -> 
( ! `  M
)  <_  ( ! `  ( k  +  1 ) ) ) ) ) )
7271com4l 92 . . . . . . 7  |-  ( k  e.  NN0  ->  ( M  e.  NN0  ->  ( ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  k ) )  -> 
( M  <_  (
k  +  1 )  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) ) ) )
7372a2d 29 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( M  e.  NN0  ->  ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  k ) ) )  ->  ( M  e. 
NN0  ->  ( M  <_ 
( k  +  1 )  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) ) ) )
7473imp4a 614 . . . . 5  |-  ( k  e.  NN0  ->  ( ( M  e.  NN0  ->  ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  k ) ) )  ->  ( ( M  e.  NN0  /\  M  <_ 
( k  +  1 ) )  ->  ( ! `  M )  <_  ( ! `  (
k  +  1 ) ) ) ) )
7529, 74syl5bi 232 . . . 4  |-  ( k  e.  NN0  ->  ( ( ( M  e.  NN0  /\  M  <_  k )  ->  ( ! `  M
)  <_  ( ! `  k ) )  -> 
( ( M  e. 
NN0  /\  M  <_  ( k  +  1 ) )  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) ) )
765, 10, 15, 20, 28, 75nn0ind 11472 . . 3  |-  ( N  e.  NN0  ->  ( ( M  e.  NN0  /\  M  <_  N )  -> 
( ! `  M
)  <_  ( ! `  N ) ) )
77763impib 1262 . 2  |-  ( ( N  e.  NN0  /\  M  e.  NN0  /\  M  <_  N )  ->  ( ! `  M )  <_  ( ! `  N
) )
78773com12 1269 1  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( ! `  M )  <_  ( ! `  N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075   NN0cn0 11292   !cfa 13060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-fac 13061
This theorem is referenced by:  facavg  13088  aaliou3lem6  24103
  Copyright terms: Public domain W3C validator