MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd Structured version   Visualization version   Unicode version

Theorem faclbnd 13077
Description: A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.)
Assertion
Ref Expression
faclbnd  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M ^ ( N  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )

Proof of Theorem faclbnd
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 11294 . 2  |-  ( M  e.  NN0  <->  ( M  e.  NN  \/  M  =  0 ) )
2 oveq1 6657 . . . . . . . 8  |-  ( j  =  0  ->  (
j  +  1 )  =  ( 0  +  1 ) )
32oveq2d 6666 . . . . . . 7  |-  ( j  =  0  ->  ( M ^ ( j  +  1 ) )  =  ( M ^ (
0  +  1 ) ) )
4 fveq2 6191 . . . . . . . 8  |-  ( j  =  0  ->  ( ! `  j )  =  ( ! ` 
0 ) )
54oveq2d 6666 . . . . . . 7  |-  ( j  =  0  ->  (
( M ^ M
)  x.  ( ! `
 j ) )  =  ( ( M ^ M )  x.  ( ! `  0
) ) )
63, 5breq12d 4666 . . . . . 6  |-  ( j  =  0  ->  (
( M ^ (
j  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  j
) )  <->  ( M ^ ( 0  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  0 )
) ) )
76imbi2d 330 . . . . 5  |-  ( j  =  0  ->  (
( M  e.  NN  ->  ( M ^ (
j  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  j
) ) )  <->  ( M  e.  NN  ->  ( M ^ ( 0  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  0 )
) ) ) )
8 oveq1 6657 . . . . . . . 8  |-  ( j  =  k  ->  (
j  +  1 )  =  ( k  +  1 ) )
98oveq2d 6666 . . . . . . 7  |-  ( j  =  k  ->  ( M ^ ( j  +  1 ) )  =  ( M ^ (
k  +  1 ) ) )
10 fveq2 6191 . . . . . . . 8  |-  ( j  =  k  ->  ( ! `  j )  =  ( ! `  k ) )
1110oveq2d 6666 . . . . . . 7  |-  ( j  =  k  ->  (
( M ^ M
)  x.  ( ! `
 j ) )  =  ( ( M ^ M )  x.  ( ! `  k
) ) )
129, 11breq12d 4666 . . . . . 6  |-  ( j  =  k  ->  (
( M ^ (
j  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  j
) )  <->  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) ) )
1312imbi2d 330 . . . . 5  |-  ( j  =  k  ->  (
( M  e.  NN  ->  ( M ^ (
j  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  j
) ) )  <->  ( M  e.  NN  ->  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) ) ) )
14 oveq1 6657 . . . . . . . 8  |-  ( j  =  ( k  +  1 )  ->  (
j  +  1 )  =  ( ( k  +  1 )  +  1 ) )
1514oveq2d 6666 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( M ^ ( j  +  1 ) )  =  ( M ^ (
( k  +  1 )  +  1 ) ) )
16 fveq2 6191 . . . . . . . 8  |-  ( j  =  ( k  +  1 )  ->  ( ! `  j )  =  ( ! `  ( k  +  1 ) ) )
1716oveq2d 6666 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  (
( M ^ M
)  x.  ( ! `
 j ) )  =  ( ( M ^ M )  x.  ( ! `  (
k  +  1 ) ) ) )
1815, 17breq12d 4666 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( M ^ (
j  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  j
) )  <->  ( M ^ ( ( k  +  1 )  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) ) ) )
1918imbi2d 330 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( M  e.  NN  ->  ( M ^ (
j  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  j
) ) )  <->  ( M  e.  NN  ->  ( M ^ ( ( k  +  1 )  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) ) ) ) )
20 oveq1 6657 . . . . . . . 8  |-  ( j  =  N  ->  (
j  +  1 )  =  ( N  + 
1 ) )
2120oveq2d 6666 . . . . . . 7  |-  ( j  =  N  ->  ( M ^ ( j  +  1 ) )  =  ( M ^ ( N  +  1 ) ) )
22 fveq2 6191 . . . . . . . 8  |-  ( j  =  N  ->  ( ! `  j )  =  ( ! `  N ) )
2322oveq2d 6666 . . . . . . 7  |-  ( j  =  N  ->  (
( M ^ M
)  x.  ( ! `
 j ) )  =  ( ( M ^ M )  x.  ( ! `  N
) ) )
2421, 23breq12d 4666 . . . . . 6  |-  ( j  =  N  ->  (
( M ^ (
j  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  j
) )  <->  ( M ^ ( N  + 
1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) ) )
2524imbi2d 330 . . . . 5  |-  ( j  =  N  ->  (
( M  e.  NN  ->  ( M ^ (
j  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  j
) ) )  <->  ( M  e.  NN  ->  ( M ^ ( N  + 
1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) ) ) )
26 nnre 11027 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  RR )
27 nnge1 11046 . . . . . . 7  |-  ( M  e.  NN  ->  1  <_  M )
28 elnnuz 11724 . . . . . . . 8  |-  ( M  e.  NN  <->  M  e.  ( ZZ>= `  1 )
)
2928biimpi 206 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  ( ZZ>= `  1 )
)
3026, 27, 29leexp2ad 13041 . . . . . 6  |-  ( M  e.  NN  ->  ( M ^ 1 )  <_ 
( M ^ M
) )
31 0p1e1 11132 . . . . . . . 8  |-  ( 0  +  1 )  =  1
3231oveq2i 6661 . . . . . . 7  |-  ( M ^ ( 0  +  1 ) )  =  ( M ^ 1 )
3332a1i 11 . . . . . 6  |-  ( M  e.  NN  ->  ( M ^ ( 0  +  1 ) )  =  ( M ^ 1 ) )
34 fac0 13063 . . . . . . . 8  |-  ( ! `
 0 )  =  1
3534oveq2i 6661 . . . . . . 7  |-  ( ( M ^ M )  x.  ( ! ` 
0 ) )  =  ( ( M ^ M )  x.  1 )
36 nnnn0 11299 . . . . . . . . . 10  |-  ( M  e.  NN  ->  M  e.  NN0 )
3726, 36reexpcld 13025 . . . . . . . . 9  |-  ( M  e.  NN  ->  ( M ^ M )  e.  RR )
3837recnd 10068 . . . . . . . 8  |-  ( M  e.  NN  ->  ( M ^ M )  e.  CC )
3938mulid1d 10057 . . . . . . 7  |-  ( M  e.  NN  ->  (
( M ^ M
)  x.  1 )  =  ( M ^ M ) )
4035, 39syl5eq 2668 . . . . . 6  |-  ( M  e.  NN  ->  (
( M ^ M
)  x.  ( ! `
 0 ) )  =  ( M ^ M ) )
4130, 33, 403brtr4d 4685 . . . . 5  |-  ( M  e.  NN  ->  ( M ^ ( 0  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  0 )
) )
4226ad3antrrr 766 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  M  e.  RR )
43 simpllr 799 . . . . . . . . . . . . . . 15  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  k  e.  NN0 )
44 peano2nn0 11333 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
4543, 44syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  ( k  +  1 )  e. 
NN0 )
4642, 45reexpcld 13025 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  ( M ^ ( k  +  1 ) )  e.  RR )
4736ad3antrrr 766 . . . . . . . . . . . . . . 15  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  M  e.  NN0 )
4842, 47reexpcld 13025 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  ( M ^ M )  e.  RR )
4943faccld 13071 . . . . . . . . . . . . . . 15  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  ( ! `  k )  e.  NN )
5049nnred 11035 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  ( ! `  k )  e.  RR )
5148, 50remulcld 10070 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  ( ( M ^ M )  x.  ( ! `  k
) )  e.  RR )
52 nn0re 11301 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  k  e.  RR )
53 peano2re 10209 . . . . . . . . . . . . . 14  |-  ( k  e.  RR  ->  (
k  +  1 )  e.  RR )
5443, 52, 533syl 18 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  ( k  +  1 )  e.  RR )
55 nngt0 11049 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN  ->  0  <  M )
5655ad3antrrr 766 . . . . . . . . . . . . . . 15  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  0  <  M )
57 0re 10040 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
58 ltle 10126 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR  /\  M  e.  RR )  ->  ( 0  <  M  ->  0  <_  M )
)
5957, 58mpan 706 . . . . . . . . . . . . . . 15  |-  ( M  e.  RR  ->  (
0  <  M  ->  0  <_  M ) )
6042, 56, 59sylc 65 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  0  <_  M )
6142, 45, 60expge0d 13026 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  0  <_  ( M ^ ( k  +  1 ) ) )
62 simplr 792 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )
63 simprr 796 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  M  <_  ( k  +  1 ) )
6446, 51, 42, 54, 61, 60, 62, 63lemul12ad 10966 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  ( ( M ^ ( k  +  1 ) )  x.  M )  <_  (
( ( M ^ M )  x.  ( ! `  k )
)  x.  ( k  +  1 ) ) )
6564anandis 873 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( M ^
( k  +  1 ) )  <_  (
( M ^ M
)  x.  ( ! `
 k ) )  /\  M  <_  (
k  +  1 ) ) )  ->  (
( M ^ (
k  +  1 ) )  x.  M )  <_  ( ( ( M ^ M )  x.  ( ! `  k ) )  x.  ( k  +  1 ) ) )
66 nncn 11028 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  M  e.  CC )
67 expp1 12867 . . . . . . . . . . . . 13  |-  ( ( M  e.  CC  /\  ( k  +  1 )  e.  NN0 )  ->  ( M ^ (
( k  +  1 )  +  1 ) )  =  ( ( M ^ ( k  +  1 ) )  x.  M ) )
6866, 44, 67syl2an 494 . . . . . . . . . . . 12  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( M ^ (
( k  +  1 )  +  1 ) )  =  ( ( M ^ ( k  +  1 ) )  x.  M ) )
6968adantr 481 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( M ^
( k  +  1 ) )  <_  (
( M ^ M
)  x.  ( ! `
 k ) )  /\  M  <_  (
k  +  1 ) ) )  ->  ( M ^ ( ( k  +  1 )  +  1 ) )  =  ( ( M ^
( k  +  1 ) )  x.  M
) )
70 facp1 13065 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  =  ( ( ! `  k )  x.  (
k  +  1 ) ) )
7170adantl 482 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ! `  (
k  +  1 ) )  =  ( ( ! `  k )  x.  ( k  +  1 ) ) )
7271oveq2d 6666 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) )  =  ( ( M ^ M )  x.  ( ( ! `
 k )  x.  ( k  +  1 ) ) ) )
7338adantr 481 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( M ^ M
)  e.  CC )
74 faccl 13070 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
7574nncnd 11036 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  CC )
7675adantl 482 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ! `  k
)  e.  CC )
77 nn0cn 11302 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  k  e.  CC )
78 peano2cn 10208 . . . . . . . . . . . . . . . 16  |-  ( k  e.  CC  ->  (
k  +  1 )  e.  CC )
7977, 78syl 17 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  CC )
8079adantl 482 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( k  +  1 )  e.  CC )
8173, 76, 80mulassd 10063 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( M ^ M )  x.  ( ! `  k
) )  x.  (
k  +  1 ) )  =  ( ( M ^ M )  x.  ( ( ! `
 k )  x.  ( k  +  1 ) ) ) )
8272, 81eqtr4d 2659 . . . . . . . . . . . 12  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) )  =  ( ( ( M ^ M
)  x.  ( ! `
 k ) )  x.  ( k  +  1 ) ) )
8382adantr 481 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( M ^
( k  +  1 ) )  <_  (
( M ^ M
)  x.  ( ! `
 k ) )  /\  M  <_  (
k  +  1 ) ) )  ->  (
( M ^ M
)  x.  ( ! `
 ( k  +  1 ) ) )  =  ( ( ( M ^ M )  x.  ( ! `  k ) )  x.  ( k  +  1 ) ) )
8465, 69, 833brtr4d 4685 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( M ^
( k  +  1 ) )  <_  (
( M ^ M
)  x.  ( ! `
 k ) )  /\  M  <_  (
k  +  1 ) ) )  ->  ( M ^ ( ( k  +  1 )  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) ) )
8584exp32 631 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( M ^
( k  +  1 ) )  <_  (
( M ^ M
)  x.  ( ! `
 k ) )  ->  ( M  <_ 
( k  +  1 )  ->  ( M ^ ( ( k  +  1 )  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) ) ) ) )
8685com23 86 . . . . . . . 8  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( M  <_  (
k  +  1 )  ->  ( ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
)  ->  ( M ^ ( ( k  +  1 )  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) ) ) ) )
87 nn0ltp1le 11435 . . . . . . . . . . 11  |-  ( ( ( k  +  1 )  e.  NN0  /\  M  e.  NN0 )  -> 
( ( k  +  1 )  <  M  <->  ( ( k  +  1 )  +  1 )  <_  M ) )
8844, 36, 87syl2anr 495 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( k  +  1 )  <  M  <->  ( ( k  +  1 )  +  1 )  <_  M ) )
89 peano2nn0 11333 . . . . . . . . . . . . . . 15  |-  ( ( k  +  1 )  e.  NN0  ->  ( ( k  +  1 )  +  1 )  e. 
NN0 )
9044, 89syl 17 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( ( k  +  1 )  +  1 )  e. 
NN0 )
91 reexpcl 12877 . . . . . . . . . . . . . 14  |-  ( ( M  e.  RR  /\  ( ( k  +  1 )  +  1 )  e.  NN0 )  ->  ( M ^ (
( k  +  1 )  +  1 ) )  e.  RR )
9226, 90, 91syl2an 494 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( M ^ (
( k  +  1 )  +  1 ) )  e.  RR )
9392adantr 481 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( M ^ (
( k  +  1 )  +  1 ) )  e.  RR )
9437ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( M ^ M
)  e.  RR )
9544faccld 13071 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  e.  NN )
9695nnred 11035 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  e.  RR )
97 remulcl 10021 . . . . . . . . . . . . . 14  |-  ( ( ( M ^ M
)  e.  RR  /\  ( ! `  ( k  +  1 ) )  e.  RR )  -> 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) )  e.  RR )
9837, 96, 97syl2an 494 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) )  e.  RR )
9998adantr 481 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) )  e.  RR )
10026ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  M  e.  RR )
10127ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  1  <_  M )
102 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( ( k  +  1 )  +  1 )  <_  M )
10390ad2antlr 763 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( ( k  +  1 )  +  1 )  e.  NN0 )
104103nn0zd 11480 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( ( k  +  1 )  +  1 )  e.  ZZ )
105 nnz 11399 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN  ->  M  e.  ZZ )
106105ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  M  e.  ZZ )
107 eluz 11701 . . . . . . . . . . . . . . 15  |-  ( ( ( ( k  +  1 )  +  1 )  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  e.  (
ZZ>= `  ( ( k  +  1 )  +  1 ) )  <->  ( (
k  +  1 )  +  1 )  <_  M ) )
108104, 106, 107syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( M  e.  (
ZZ>= `  ( ( k  +  1 )  +  1 ) )  <->  ( (
k  +  1 )  +  1 )  <_  M ) )
109102, 108mpbird 247 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  M  e.  ( ZZ>= `  ( ( k  +  1 )  +  1 ) ) )
110100, 101, 109leexp2ad 13041 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( M ^ (
( k  +  1 )  +  1 ) )  <_  ( M ^ M ) )
11137, 96anim12i 590 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( M ^ M )  e.  RR  /\  ( ! `  (
k  +  1 ) )  e.  RR ) )
112 nn0re 11301 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  NN0  ->  M  e.  RR )
113 id 22 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  NN0  ->  M  e. 
NN0 )
114 nn0ge0 11318 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  NN0  ->  0  <_  M )
115112, 113, 114expge0d 13026 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN0  ->  0  <_ 
( M ^ M
) )
11636, 115syl 17 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  0  <_  ( M ^ M
) )
11795nnge1d 11063 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  1  <_ 
( ! `  (
k  +  1 ) ) )
118116, 117anim12i 590 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( 0  <_  ( M ^ M )  /\  1  <_  ( ! `  ( k  +  1 ) ) ) )
119 lemulge11 10885 . . . . . . . . . . . . . 14  |-  ( ( ( ( M ^ M )  e.  RR  /\  ( ! `  (
k  +  1 ) )  e.  RR )  /\  ( 0  <_ 
( M ^ M
)  /\  1  <_  ( ! `  ( k  +  1 ) ) ) )  ->  ( M ^ M )  <_ 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) ) )
120111, 118, 119syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( M ^ M
)  <_  ( ( M ^ M )  x.  ( ! `  (
k  +  1 ) ) ) )
121120adantr 481 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( M ^ M
)  <_  ( ( M ^ M )  x.  ( ! `  (
k  +  1 ) ) ) )
12293, 94, 99, 110, 121letrd 10194 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( M ^ (
( k  +  1 )  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  (
k  +  1 ) ) ) )
123122ex 450 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( k  +  1 )  +  1 )  <_  M  ->  ( M ^ (
( k  +  1 )  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  (
k  +  1 ) ) ) ) )
12488, 123sylbid 230 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( k  +  1 )  <  M  ->  ( M ^ (
( k  +  1 )  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  (
k  +  1 ) ) ) ) )
125124a1dd 50 . . . . . . . 8  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( k  +  1 )  <  M  ->  ( ( M ^
( k  +  1 ) )  <_  (
( M ^ M
)  x.  ( ! `
 k ) )  ->  ( M ^
( ( k  +  1 )  +  1 ) )  <_  (
( M ^ M
)  x.  ( ! `
 ( k  +  1 ) ) ) ) ) )
12652, 53syl 17 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  RR )
127 lelttric 10144 . . . . . . . . 9  |-  ( ( M  e.  RR  /\  ( k  +  1 )  e.  RR )  ->  ( M  <_ 
( k  +  1 )  \/  ( k  +  1 )  < 
M ) )
12826, 126, 127syl2an 494 . . . . . . . 8  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( M  <_  (
k  +  1 )  \/  ( k  +  1 )  <  M
) )
12986, 125, 128mpjaod 396 . . . . . . 7  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( M ^
( k  +  1 ) )  <_  (
( M ^ M
)  x.  ( ! `
 k ) )  ->  ( M ^
( ( k  +  1 )  +  1 ) )  <_  (
( M ^ M
)  x.  ( ! `
 ( k  +  1 ) ) ) ) )
130129expcom 451 . . . . . 6  |-  ( k  e.  NN0  ->  ( M  e.  NN  ->  (
( M ^ (
k  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  k
) )  ->  ( M ^ ( ( k  +  1 )  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) ) ) ) )
131130a2d 29 . . . . 5  |-  ( k  e.  NN0  ->  ( ( M  e.  NN  ->  ( M ^ ( k  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  k
) ) )  -> 
( M  e.  NN  ->  ( M ^ (
( k  +  1 )  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  (
k  +  1 ) ) ) ) ) )
1327, 13, 19, 25, 41, 131nn0ind 11472 . . . 4  |-  ( N  e.  NN0  ->  ( M  e.  NN  ->  ( M ^ ( N  + 
1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) ) )
133132impcom 446 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( M ^ ( N  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )
134 faccl 13070 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
135134nnnn0d 11351 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ! `
 N )  e. 
NN0 )
136135nn0ge0d 11354 . . . . . 6  |-  ( N  e.  NN0  ->  0  <_ 
( ! `  N
) )
137 nn0p1nn 11332 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
1381370expd 13024 . . . . . 6  |-  ( N  e.  NN0  ->  ( 0 ^ ( N  + 
1 ) )  =  0 )
139 0exp0e1 12865 . . . . . . . 8  |-  ( 0 ^ 0 )  =  1
140139oveq1i 6660 . . . . . . 7  |-  ( ( 0 ^ 0 )  x.  ( ! `  N ) )  =  ( 1  x.  ( ! `  N )
)
141134nncnd 11036 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  CC )
142141mulid2d 10058 . . . . . . 7  |-  ( N  e.  NN0  ->  ( 1  x.  ( ! `  N ) )  =  ( ! `  N
) )
143140, 142syl5eq 2668 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( 0 ^ 0 )  x.  ( ! `  N ) )  =  ( ! `  N
) )
144136, 138, 1433brtr4d 4685 . . . . 5  |-  ( N  e.  NN0  ->  ( 0 ^ ( N  + 
1 ) )  <_ 
( ( 0 ^ 0 )  x.  ( ! `  N )
) )
145 oveq1 6657 . . . . . 6  |-  ( M  =  0  ->  ( M ^ ( N  + 
1 ) )  =  ( 0 ^ ( N  +  1 ) ) )
146 oveq12 6659 . . . . . . . 8  |-  ( ( M  =  0  /\  M  =  0 )  ->  ( M ^ M )  =  ( 0 ^ 0 ) )
147146anidms 677 . . . . . . 7  |-  ( M  =  0  ->  ( M ^ M )  =  ( 0 ^ 0 ) )
148147oveq1d 6665 . . . . . 6  |-  ( M  =  0  ->  (
( M ^ M
)  x.  ( ! `
 N ) )  =  ( ( 0 ^ 0 )  x.  ( ! `  N
) ) )
149145, 148breq12d 4666 . . . . 5  |-  ( M  =  0  ->  (
( M ^ ( N  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  N
) )  <->  ( 0 ^ ( N  + 
1 ) )  <_ 
( ( 0 ^ 0 )  x.  ( ! `  N )
) ) )
150144, 149syl5ibr 236 . . . 4  |-  ( M  =  0  ->  ( N  e.  NN0  ->  ( M ^ ( N  + 
1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) ) )
151150imp 445 . . 3  |-  ( ( M  =  0  /\  N  e.  NN0 )  ->  ( M ^ ( N  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )
152133, 151jaoian 824 . 2  |-  ( ( ( M  e.  NN  \/  M  =  0
)  /\  N  e.  NN0 )  ->  ( M ^ ( N  + 
1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) )
1531, 152sylanb 489 1  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M ^ ( N  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ^cexp 12860   !cfa 13060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-fac 13061
This theorem is referenced by:  faclbnd2  13078  faclbnd3  13079
  Copyright terms: Public domain W3C validator