Proof of Theorem fmtno5faclem3
| Step | Hyp | Ref
| Expression |
| 1 | | 4nn0 11311 |
. . . . . . . . 9
 |
| 2 | | 0nn0 11307 |
. . . . . . . . 9
 |
| 3 | 1, 2 | deccl 11512 |
. . . . . . . 8
;  |
| 4 | | 2nn0 11309 |
. . . . . . . 8
 |
| 5 | 3, 4 | deccl 11512 |
. . . . . . 7
;;   |
| 6 | 5, 2 | deccl 11512 |
. . . . . 6
;;;    |
| 7 | 6, 4 | deccl 11512 |
. . . . 5
;;;;     |
| 8 | | 5nn0 11312 |
. . . . 5
 |
| 9 | 7, 8 | deccl 11512 |
. . . 4
;;;;;      |
| 10 | 9, 2 | deccl 11512 |
. . 3
;;;;;;       |
| 11 | 10, 4 | deccl 11512 |
. 2
;;;;;;;        |
| 12 | | 6nn0 11313 |
. . . . . . . 8
 |
| 13 | 4, 12 | deccl 11512 |
. . . . . . 7
;  |
| 14 | | 8nn0 11315 |
. . . . . . 7
 |
| 15 | 13, 14 | deccl 11512 |
. . . . . 6
;;   |
| 16 | 15, 2 | deccl 11512 |
. . . . 5
;;;    |
| 17 | | 1nn0 11308 |
. . . . 5
 |
| 18 | 16, 17 | deccl 11512 |
. . . 4
;;;;     |
| 19 | 18, 12 | deccl 11512 |
. . 3
;;;;;      |
| 20 | 19, 12 | deccl 11512 |
. 2
;;;;;;       |
| 21 | | eqid 2622 |
. 2
;;;;;;;;        ;;;;;;;;         |
| 22 | | eqid 2622 |
. 2
;;;;;;;       ;;;;;;;        |
| 23 | | eqid 2622 |
. . 3
;;;;;;;       ;;;;;;;        |
| 24 | | eqid 2622 |
. . 3
;;;;;;      ;;;;;;       |
| 25 | | eqid 2622 |
. . . 4
;;;;;;      ;;;;;;       |
| 26 | | eqid 2622 |
. . . 4
;;;;;     ;;;;;      |
| 27 | | eqid 2622 |
. . . . 5
;;;;;     ;;;;;      |
| 28 | | eqid 2622 |
. . . . 5
;;;;    ;;;;     |
| 29 | | eqid 2622 |
. . . . . 6
;;;;    ;;;;     |
| 30 | | eqid 2622 |
. . . . . 6
;;;   ;;;    |
| 31 | | eqid 2622 |
. . . . . . 7
;;;   ;;;    |
| 32 | | eqid 2622 |
. . . . . . 7
;;  ;;   |
| 33 | | eqid 2622 |
. . . . . . . 8
;;  ;;   |
| 34 | | eqid 2622 |
. . . . . . . 8
; ;  |
| 35 | | eqid 2622 |
. . . . . . . . 9
; ;  |
| 36 | | 2cn 11091 |
. . . . . . . . . 10
 |
| 37 | 36 | addid2i 10224 |
. . . . . . . . 9
   |
| 38 | 1, 2, 4, 35, 37 | decaddi 11579 |
. . . . . . . 8
;  ;  |
| 39 | | 6cn 11102 |
. . . . . . . . 9
 |
| 40 | | 6p2e8 11169 |
. . . . . . . . 9
   |
| 41 | 39, 36, 40 | addcomli 10228 |
. . . . . . . 8
   |
| 42 | 3, 4, 4, 12, 33, 34, 38, 41 | decadd 11570 |
. . . . . . 7
;;  ;  ;;   |
| 43 | | 8cn 11106 |
. . . . . . . 8
 |
| 44 | 43 | addid2i 10224 |
. . . . . . 7
   |
| 45 | 5, 2, 13, 14, 31, 32, 42, 44 | decadd 11570 |
. . . . . 6
;;;   ;;   ;;;    |
| 46 | 36 | addid1i 10223 |
. . . . . 6
   |
| 47 | 6, 4, 15, 2, 29, 30, 45, 46 | decadd 11570 |
. . . . 5
;;;;    ;;;    ;;;;     |
| 48 | | 5p1e6 11155 |
. . . . 5
   |
| 49 | 7, 8, 16, 17, 27, 28, 47, 48 | decadd 11570 |
. . . 4
;;;;;     ;;;;     ;;;;;      |
| 50 | 39 | addid2i 10224 |
. . . 4
   |
| 51 | 9, 2, 18, 12, 25, 26, 49, 50 | decadd 11570 |
. . 3
;;;;;;      ;;;;;      ;;;;;;       |
| 52 | 10, 4, 19, 12, 23, 24, 51, 41 | decadd 11570 |
. 2
;;;;;;;       ;;;;;;       ;;;;;;;        |
| 53 | 11, 2, 20, 14, 21, 22, 52, 44 | decadd 11570 |
1
;;;;;;;;        ;;;;;;;        ;;;;;;;;         |