MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpup3 Structured version   Visualization version   Unicode version

Theorem frgpup3 18191
Description: Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
frgpup3.g  |-  G  =  (freeGrp `  I )
frgpup3.b  |-  B  =  ( Base `  H
)
frgpup3.u  |-  U  =  (varFGrp `  I )
Assertion
Ref Expression
frgpup3  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  E! m  e.  ( G  GrpHom  H ) ( m  o.  U
)  =  F )
Distinct variable groups:    B, m    m, F    m, G    m, H    m, I    U, m   
m, V

Proof of Theorem frgpup3
Dummy variables  g 
k  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpup3.b . . 3  |-  B  =  ( Base `  H
)
2 eqid 2622 . . 3  |-  ( invg `  H )  =  ( invg `  H )
3 eqid 2622 . . 3  |-  ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `  y ) ,  ( ( invg `  H ) `
 ( F `  y ) ) ) )  =  ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `  y ) ,  ( ( invg `  H ) `
 ( F `  y ) ) ) )
4 simp1 1061 . . 3  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  H  e.  Grp )
5 simp2 1062 . . 3  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  I  e.  V
)
6 simp3 1063 . . 3  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  F : I --> B )
7 eqid 2622 . . 3  |-  (  _I 
` Word  ( I  X.  2o ) )  =  (  _I  ` Word  ( I  X.  2o ) )
8 eqid 2622 . . 3  |-  ( ~FG  `  I
)  =  ( ~FG  `  I
)
9 frgpup3.g . . 3  |-  G  =  (freeGrp `  I )
10 eqid 2622 . . 3  |-  ( Base `  G )  =  (
Base `  G )
11 eqid 2622 . . 3  |-  ran  (
g  e.  (  _I 
` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  =  ran  (
g  e.  (  _I 
` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11frgpup1 18188 . 2  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) ) 
|->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  e.  ( G 
GrpHom  H ) )
134adantr 481 . . . . 5  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  k  e.  I
)  ->  H  e.  Grp )
145adantr 481 . . . . 5  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  k  e.  I
)  ->  I  e.  V )
156adantr 481 . . . . 5  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  k  e.  I
)  ->  F :
I --> B )
16 frgpup3.u . . . . 5  |-  U  =  (varFGrp `  I )
17 simpr 477 . . . . 5  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  k  e.  I
)  ->  k  e.  I )
181, 2, 3, 13, 14, 15, 7, 8, 9, 10, 11, 16, 17frgpup2 18189 . . . 4  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  k  e.  I
)  ->  ( ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) `  ( U `  k ) )  =  ( F `  k
) )
1918mpteq2dva 4744 . . 3  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  ( k  e.  I  |->  ( ran  (
g  e.  (  _I 
` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) `  ( U `  k ) ) )  =  ( k  e.  I  |->  ( F `  k ) ) )
2010, 1ghmf 17664 . . . . 5  |-  ( ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  e.  ( G 
GrpHom  H )  ->  ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) : ( Base `  G ) --> B )
2112, 20syl 17 . . . 4  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) ) 
|->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) : ( Base `  G ) --> B )
228, 16, 9, 10vrgpf 18181 . . . . 5  |-  ( I  e.  V  ->  U : I --> ( Base `  G ) )
235, 22syl 17 . . . 4  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  U : I --> ( Base `  G
) )
24 fcompt 6400 . . . 4  |-  ( ( ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) ) 
|->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) : ( Base `  G ) --> B  /\  U : I --> ( Base `  G ) )  -> 
( ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) ) 
|->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  o.  U )  =  ( k  e.  I  |->  ( ran  (
g  e.  (  _I 
` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) `  ( U `  k ) ) ) )
2521, 23, 24syl2anc 693 . . 3  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  ( ran  (
g  e.  (  _I 
` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  o.  U )  =  ( k  e.  I  |->  ( ran  (
g  e.  (  _I 
` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) `  ( U `  k ) ) ) )
266feqmptd 6249 . . 3  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  F  =  ( k  e.  I  |->  ( F `  k ) ) )
2719, 25, 263eqtr4d 2666 . 2  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  ( ran  (
g  e.  (  _I 
` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  o.  U )  =  F )
284adantr 481 . . . . 5  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  ( m  e.  ( G  GrpHom  H )  /\  ( m  o.  U )  =  F ) )  ->  H  e.  Grp )
295adantr 481 . . . . 5  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  ( m  e.  ( G  GrpHom  H )  /\  ( m  o.  U )  =  F ) )  ->  I  e.  V )
306adantr 481 . . . . 5  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  ( m  e.  ( G  GrpHom  H )  /\  ( m  o.  U )  =  F ) )  ->  F : I --> B )
31 simprl 794 . . . . 5  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  ( m  e.  ( G  GrpHom  H )  /\  ( m  o.  U )  =  F ) )  ->  m  e.  ( G  GrpHom  H ) )
32 simprr 796 . . . . 5  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  ( m  e.  ( G  GrpHom  H )  /\  ( m  o.  U )  =  F ) )  ->  (
m  o.  U )  =  F )
331, 2, 3, 28, 29, 30, 7, 8, 9, 10, 11, 16, 31, 32frgpup3lem 18190 . . . 4  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  ( m  e.  ( G  GrpHom  H )  /\  ( m  o.  U )  =  F ) )  ->  m  =  ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) ) 
|->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) )
3433expr 643 . . 3  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  m  e.  ( G  GrpHom  H ) )  ->  ( ( m  o.  U )  =  F  ->  m  =  ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) ) )
3534ralrimiva 2966 . 2  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  A. m  e.  ( G  GrpHom  H ) ( ( m  o.  U
)  =  F  ->  m  =  ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) ) )
36 coeq1 5279 . . . 4  |-  ( m  =  ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  ->  ( m  o.  U )  =  ( ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) ) 
|->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  o.  U ) )
3736eqeq1d 2624 . . 3  |-  ( m  =  ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  ->  ( (
m  o.  U )  =  F  <->  ( ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  o.  U )  =  F ) )
3837eqreu 3398 . 2  |-  ( ( ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) ) 
|->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  e.  ( G 
GrpHom  H )  /\  ( ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  o.  U )  =  F  /\  A. m  e.  ( G  GrpHom  H ) ( ( m  o.  U )  =  F  ->  m  =  ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) ) 
|->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) ) )  ->  E! m  e.  ( G  GrpHom  H ) ( m  o.  U )  =  F )
3912, 27, 35, 38syl3anc 1326 1  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  E! m  e.  ( G  GrpHom  H ) ( m  o.  U
)  =  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E!wreu 2914   (/)c0 3915   ifcif 4086   <.cop 4183    |-> cmpt 4729    _I cid 5023    X. cxp 5112   ran crn 5115    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   2oc2o 7554   [cec 7740  Word cword 13291   Basecbs 15857    gsumg cgsu 16101   Grpcgrp 17422   invgcminusg 17423    GrpHom cghm 17657   ~FG cefg 18119  freeGrpcfrgp 18120  varFGrpcvrgp 18121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-reverse 13305  df-s2 13593  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-0g 16102  df-gsum 16103  df-imas 16168  df-qus 16169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-frmd 17386  df-vrmd 17387  df-grp 17425  df-minusg 17426  df-ghm 17658  df-efg 18122  df-frgp 18123  df-vrgp 18124
This theorem is referenced by:  0frgp  18192  frgpcyg  19922
  Copyright terms: Public domain W3C validator