MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpcyg Structured version   Visualization version   Unicode version

Theorem frgpcyg 19922
Description: A free group is cyclic iff it has zero or one generator. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 18-Apr-2021.)
Hypothesis
Ref Expression
frgpcyg.g  |-  G  =  (freeGrp `  I )
Assertion
Ref Expression
frgpcyg  |-  ( I  ~<_  1o  <->  G  e. CycGrp )

Proof of Theorem frgpcyg
Dummy variables  f 
g  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdom2 7985 . . 3  |-  ( I  ~<_  1o  <->  ( I  ~<  1o  \/  I  ~~  1o ) )
2 sdom1 8160 . . . . 5  |-  ( I 
~<  1o  <->  I  =  (/) )
3 frgpcyg.g . . . . . . 7  |-  G  =  (freeGrp `  I )
4 fveq2 6191 . . . . . . 7  |-  ( I  =  (/)  ->  (freeGrp `  I
)  =  (freeGrp `  (/) ) )
53, 4syl5eq 2668 . . . . . 6  |-  ( I  =  (/)  ->  G  =  (freeGrp `  (/) ) )
6 0ex 4790 . . . . . . . 8  |-  (/)  e.  _V
7 eqid 2622 . . . . . . . . 9  |-  (freeGrp `  (/) )  =  (freeGrp `  (/) )
87frgpgrp 18175 . . . . . . . 8  |-  ( (/)  e.  _V  ->  (freeGrp `  (/) )  e. 
Grp )
96, 8ax-mp 5 . . . . . . 7  |-  (freeGrp `  (/) )  e. 
Grp
10 eqid 2622 . . . . . . . 8  |-  ( Base `  (freeGrp `  (/) ) )  =  ( Base `  (freeGrp `  (/) ) )
117, 100frgp 18192 . . . . . . 7  |-  ( Base `  (freeGrp `  (/) ) ) 
~~  1o
12100cyg 18294 . . . . . . 7  |-  ( ( (freeGrp `  (/) )  e. 
Grp  /\  ( Base `  (freeGrp `  (/) ) ) 
~~  1o )  -> 
(freeGrp `  (/) )  e. CycGrp )
139, 11, 12mp2an 708 . . . . . 6  |-  (freeGrp `  (/) )  e. CycGrp
145, 13syl6eqel 2709 . . . . 5  |-  ( I  =  (/)  ->  G  e. CycGrp
)
152, 14sylbi 207 . . . 4  |-  ( I 
~<  1o  ->  G  e. CycGrp )
16 eqid 2622 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
17 eqid 2622 . . . . 5  |-  (.g `  G
)  =  (.g `  G
)
18 relen 7960 . . . . . . 7  |-  Rel  ~~
1918brrelexi 5158 . . . . . 6  |-  ( I 
~~  1o  ->  I  e. 
_V )
203frgpgrp 18175 . . . . . 6  |-  ( I  e.  _V  ->  G  e.  Grp )
2119, 20syl 17 . . . . 5  |-  ( I 
~~  1o  ->  G  e. 
Grp )
22 eqid 2622 . . . . . . . 8  |-  ( ~FG  `  I
)  =  ( ~FG  `  I
)
23 eqid 2622 . . . . . . . 8  |-  (varFGrp `  I
)  =  (varFGrp `  I
)
2422, 23, 3, 16vrgpf 18181 . . . . . . 7  |-  ( I  e.  _V  ->  (varFGrp `  I
) : I --> ( Base `  G ) )
2519, 24syl 17 . . . . . 6  |-  ( I 
~~  1o  ->  (varFGrp `  I
) : I --> ( Base `  G ) )
26 en1uniel 8028 . . . . . 6  |-  ( I 
~~  1o  ->  U. I  e.  I )
2725, 26ffvelrnd 6360 . . . . 5  |-  ( I 
~~  1o  ->  ( (varFGrp `  I ) `  U. I )  e.  (
Base `  G )
)
28 zringgrp 19823 . . . . . . . . 9  |-ring  e.  Grp
29 uniexg 6955 . . . . . . . . . . . 12  |-  ( I  e.  _V  ->  U. I  e.  _V )
3019, 29syl 17 . . . . . . . . . . 11  |-  ( I 
~~  1o  ->  U. I  e.  _V )
31 1zzd 11408 . . . . . . . . . . 11  |-  ( I 
~~  1o  ->  1  e.  ZZ )
3230, 31fsnd 6179 . . . . . . . . . 10  |-  ( I 
~~  1o  ->  { <. U. I ,  1 >. } : { U. I }
--> ZZ )
33 en1b 8024 . . . . . . . . . . . 12  |-  ( I 
~~  1o  <->  I  =  { U. I } )
3433biimpi 206 . . . . . . . . . . 11  |-  ( I 
~~  1o  ->  I  =  { U. I }
)
3534feq2d 6031 . . . . . . . . . 10  |-  ( I 
~~  1o  ->  ( {
<. U. I ,  1
>. } : I --> ZZ  <->  { <. U. I ,  1 >. } : { U. I } --> ZZ ) )
3632, 35mpbird 247 . . . . . . . . 9  |-  ( I 
~~  1o  ->  { <. U. I ,  1 >. } : I --> ZZ )
37 zringbas 19824 . . . . . . . . . 10  |-  ZZ  =  ( Base ` ring )
383, 37, 23frgpup3 18191 . . . . . . . . 9  |-  ( (ring  e. 
Grp  /\  I  e.  _V  /\  { <. U. I ,  1 >. } :
I --> ZZ )  ->  E! f  e.  ( G  GrpHomring
) ( f  o.  (varFGrp `  I ) )  =  { <. U. I ,  1
>. } )
3928, 19, 36, 38mp3an2i 1429 . . . . . . . 8  |-  ( I 
~~  1o  ->  E! f  e.  ( G  GrpHomring ) ( f  o.  (varFGrp `  I
) )  =  { <. U. I ,  1
>. } )
4039adantr 481 . . . . . . 7  |-  ( ( I  ~~  1o  /\  x  e.  ( Base `  G ) )  ->  E! f  e.  ( G  GrpHomring
) ( f  o.  (varFGrp `  I ) )  =  { <. U. I ,  1
>. } )
41 reurex 3160 . . . . . . 7  |-  ( E! f  e.  ( G 
GrpHomring ) ( f  o.  (varFGrp `  I
) )  =  { <. U. I ,  1
>. }  ->  E. f  e.  ( G  GrpHomring ) ( f  o.  (varFGrp `  I ) )  =  { <. U. I ,  1
>. } )
4240, 41syl 17 . . . . . 6  |-  ( ( I  ~~  1o  /\  x  e.  ( Base `  G ) )  ->  E. f  e.  ( G  GrpHomring
) ( f  o.  (varFGrp `  I ) )  =  { <. U. I ,  1
>. } )
43 fveq1 6190 . . . . . . . . . 10  |-  ( ( f  o.  (varFGrp `  I
) )  =  { <. U. I ,  1
>. }  ->  ( (
f  o.  (varFGrp `  I
) ) `  U. I )  =  ( { <. U. I ,  1
>. } `  U. I
) )
44 fvco3 6275 . . . . . . . . . . . 12  |-  ( ( (varFGrp `  I ) : I --> ( Base `  G
)  /\  U. I  e.  I )  ->  (
( f  o.  (varFGrp `  I
) ) `  U. I )  =  ( f `  ( (varFGrp `  I ) `  U. I ) ) )
4525, 26, 44syl2anc 693 . . . . . . . . . . 11  |-  ( I 
~~  1o  ->  ( ( f  o.  (varFGrp `  I
) ) `  U. I )  =  ( f `  ( (varFGrp `  I ) `  U. I ) ) )
46 1z 11407 . . . . . . . . . . . 12  |-  1  e.  ZZ
47 fvsng 6447 . . . . . . . . . . . 12  |-  ( ( U. I  e.  _V  /\  1  e.  ZZ )  ->  ( { <. U. I ,  1 >. } `  U. I )  =  1 )
4830, 46, 47sylancl 694 . . . . . . . . . . 11  |-  ( I 
~~  1o  ->  ( {
<. U. I ,  1
>. } `  U. I
)  =  1 )
4945, 48eqeq12d 2637 . . . . . . . . . 10  |-  ( I 
~~  1o  ->  ( ( ( f  o.  (varFGrp `  I
) ) `  U. I )  =  ( { <. U. I ,  1
>. } `  U. I
)  <->  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )
5043, 49syl5ib 234 . . . . . . . . 9  |-  ( I 
~~  1o  ->  ( ( f  o.  (varFGrp `  I
) )  =  { <. U. I ,  1
>. }  ->  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )
5150ad2antrr 762 . . . . . . . 8  |-  ( ( ( I  ~~  1o  /\  x  e.  ( Base `  G ) )  /\  f  e.  ( G  GrpHomring )
)  ->  ( (
f  o.  (varFGrp `  I
) )  =  { <. U. I ,  1
>. }  ->  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )
5216, 37ghmf 17664 . . . . . . . . . . . . 13  |-  ( f  e.  ( G  GrpHomring )  -> 
f : ( Base `  G ) --> ZZ )
5352ad2antrl 764 . . . . . . . . . . . 12  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  -> 
f : ( Base `  G ) --> ZZ )
5453ffvelrnda 6359 . . . . . . . . . . 11  |-  ( ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  /\  x  e.  ( Base `  G ) )  -> 
( f `  x
)  e.  ZZ )
5554an32s 846 . . . . . . . . . 10  |-  ( ( ( I  ~~  1o  /\  x  e.  ( Base `  G ) )  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  -> 
( f `  x
)  e.  ZZ )
56 mptresid 5456 . . . . . . . . . . . . . 14  |-  ( x  e.  ( Base `  G
)  |->  x )  =  (  _I  |`  ( Base `  G ) )
573, 16, 23frgpup3 18191 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  I  e.  _V  /\  (varFGrp `  I
) : I --> ( Base `  G ) )  ->  E! g  e.  ( G  GrpHom  G ) ( g  o.  (varFGrp `  I
) )  =  (varFGrp `  I ) )
5821, 19, 25, 57syl3anc 1326 . . . . . . . . . . . . . . . . 17  |-  ( I 
~~  1o  ->  E! g  e.  ( G  GrpHom  G ) ( g  o.  (varFGrp `  I ) )  =  (varFGrp `  I ) )
59 reurmo 3161 . . . . . . . . . . . . . . . . 17  |-  ( E! g  e.  ( G 
GrpHom  G ) ( g  o.  (varFGrp `  I ) )  =  (varFGrp `  I )  ->  E* g  e.  ( G  GrpHom  G ) ( g  o.  (varFGrp `  I ) )  =  (varFGrp `  I ) )
6058, 59syl 17 . . . . . . . . . . . . . . . 16  |-  ( I 
~~  1o  ->  E* g  e.  ( G  GrpHom  G ) ( g  o.  (varFGrp `  I
) )  =  (varFGrp `  I ) )
6160adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  ->  E* g  e.  ( G  GrpHom  G ) ( g  o.  (varFGrp `  I
) )  =  (varFGrp `  I ) )
6221adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  ->  G  e.  Grp )
6316idghm 17675 . . . . . . . . . . . . . . . 16  |-  ( G  e.  Grp  ->  (  _I  |`  ( Base `  G
) )  e.  ( G  GrpHom  G ) )
6462, 63syl 17 . . . . . . . . . . . . . . 15  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  -> 
(  _I  |`  ( Base `  G ) )  e.  ( G  GrpHom  G ) )
6525adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  -> 
(varFGrp `  I ) : I --> ( Base `  G
) )
66 fcoi2 6079 . . . . . . . . . . . . . . . 16  |-  ( (varFGrp `  I ) : I --> ( Base `  G
)  ->  ( (  _I  |`  ( Base `  G
) )  o.  (varFGrp `  I
) )  =  (varFGrp `  I ) )
6765, 66syl 17 . . . . . . . . . . . . . . 15  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  -> 
( (  _I  |`  ( Base `  G ) )  o.  (varFGrp `  I ) )  =  (varFGrp `  I ) )
6853feqmptd 6249 . . . . . . . . . . . . . . . . 17  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  -> 
f  =  ( x  e.  ( Base `  G
)  |->  ( f `  x ) ) )
69 eqidd 2623 . . . . . . . . . . . . . . . . 17  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  -> 
( n  e.  ZZ  |->  ( n (.g `  G
) ( (varFGrp `  I
) `  U. I ) ) )  =  ( n  e.  ZZ  |->  ( n (.g `  G ) ( (varFGrp `  I ) `  U. I ) ) ) )
70 oveq1 6657 . . . . . . . . . . . . . . . . 17  |-  ( n  =  ( f `  x )  ->  (
n (.g `  G ) ( (varFGrp `  I ) `  U. I ) )  =  ( ( f `  x ) (.g `  G
) ( (varFGrp `  I
) `  U. I ) ) )
7154, 68, 69, 70fmptco 6396 . . . . . . . . . . . . . . . 16  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  -> 
( ( n  e.  ZZ  |->  ( n (.g `  G ) ( (varFGrp `  I ) `  U. I ) ) )  o.  f )  =  ( x  e.  (
Base `  G )  |->  ( ( f `  x ) (.g `  G
) ( (varFGrp `  I
) `  U. I ) ) ) )
7227adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  -> 
( (varFGrp `  I ) `  U. I )  e.  (
Base `  G )
)
73 eqid 2622 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  ZZ  |->  ( n (.g `  G ) ( (varFGrp `  I ) `  U. I ) ) )  =  ( n  e.  ZZ  |->  ( n (.g `  G ) ( (varFGrp `  I ) `  U. I ) ) )
7417, 73, 16mulgghm2 19845 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  ( (varFGrp `  I ) `  U. I )  e.  (
Base `  G )
)  ->  ( n  e.  ZZ  |->  ( n (.g `  G ) ( (varFGrp `  I ) `  U. I ) ) )  e.  (ring  GrpHom  G ) )
7562, 72, 74syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  -> 
( n  e.  ZZ  |->  ( n (.g `  G
) ( (varFGrp `  I
) `  U. I ) ) )  e.  (ring  GrpHom  G ) )
76 simprl 794 . . . . . . . . . . . . . . . . 17  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  -> 
f  e.  ( G 
GrpHomring ) )
77 ghmco 17680 . . . . . . . . . . . . . . . . 17  |-  ( ( ( n  e.  ZZ  |->  ( n (.g `  G
) ( (varFGrp `  I
) `  U. I ) ) )  e.  (ring  GrpHom  G )  /\  f  e.  ( G  GrpHomring ) )  ->  (
( n  e.  ZZ  |->  ( n (.g `  G
) ( (varFGrp `  I
) `  U. I ) ) )  o.  f
)  e.  ( G 
GrpHom  G ) )
7875, 76, 77syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  -> 
( ( n  e.  ZZ  |->  ( n (.g `  G ) ( (varFGrp `  I ) `  U. I ) ) )  o.  f )  e.  ( G  GrpHom  G ) )
7971, 78eqeltrrd 2702 . . . . . . . . . . . . . . 15  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  -> 
( x  e.  (
Base `  G )  |->  ( ( f `  x ) (.g `  G
) ( (varFGrp `  I
) `  U. I ) ) )  e.  ( G  GrpHom  G ) )
8034adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  ->  I  =  { U. I } )
8180eleq2d 2687 . . . . . . . . . . . . . . . . . . 19  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  -> 
( y  e.  I  <->  y  e.  { U. I } ) )
82 simprr 796 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  -> 
( f `  (
(varFGrp `  I ) `  U. I ) )  =  1 )
8382oveq1d 6665 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  -> 
( ( f `  ( (varFGrp `  I ) `  U. I ) ) (.g `  G ) ( (varFGrp `  I ) `  U. I ) )  =  ( 1 (.g `  G
) ( (varFGrp `  I
) `  U. I ) ) )
8416, 17mulg1 17548 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( (varFGrp `  I ) `  U. I )  e.  (
Base `  G )  ->  ( 1 (.g `  G
) ( (varFGrp `  I
) `  U. I ) )  =  ( (varFGrp `  I ) `  U. I ) )
8572, 84syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  -> 
( 1 (.g `  G
) ( (varFGrp `  I
) `  U. I ) )  =  ( (varFGrp `  I ) `  U. I ) )
8683, 85eqtrd 2656 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  -> 
( ( f `  ( (varFGrp `  I ) `  U. I ) ) (.g `  G ) ( (varFGrp `  I ) `  U. I ) )  =  ( (varFGrp `  I ) `  U. I ) )
87 elsni 4194 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  e.  { U. I }  ->  y  =  U. I )
8887fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  { U. I }  ->  ( (varFGrp `  I
) `  y )  =  ( (varFGrp `  I
) `  U. I ) )
8988fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  { U. I }  ->  ( f `  ( (varFGrp `  I ) `  y
) )  =  ( f `  ( (varFGrp `  I ) `  U. I ) ) )
9089oveq1d 6665 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  { U. I }  ->  ( ( f `
 ( (varFGrp `  I
) `  y )
) (.g `  G ) ( (varFGrp `  I ) `  U. I ) )  =  ( ( f `  ( (varFGrp `  I ) `  U. I ) ) (.g `  G ) ( (varFGrp `  I ) `  U. I ) ) )
9190, 88eqeq12d 2637 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  { U. I }  ->  ( ( ( f `  ( (varFGrp `  I ) `  y
) ) (.g `  G
) ( (varFGrp `  I
) `  U. I ) )  =  ( (varFGrp `  I ) `  y
)  <->  ( ( f `
 ( (varFGrp `  I
) `  U. I ) ) (.g `  G ) ( (varFGrp `  I ) `  U. I ) )  =  ( (varFGrp `  I ) `  U. I ) ) )
9286, 91syl5ibrcom 237 . . . . . . . . . . . . . . . . . . 19  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  -> 
( y  e.  { U. I }  ->  (
( f `  (
(varFGrp `  I ) `  y
) ) (.g `  G
) ( (varFGrp `  I
) `  U. I ) )  =  ( (varFGrp `  I ) `  y
) ) )
9381, 92sylbid 230 . . . . . . . . . . . . . . . . . 18  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  -> 
( y  e.  I  ->  ( ( f `  ( (varFGrp `  I ) `  y
) ) (.g `  G
) ( (varFGrp `  I
) `  U. I ) )  =  ( (varFGrp `  I ) `  y
) ) )
9493imp 445 . . . . . . . . . . . . . . . . 17  |-  ( ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  /\  y  e.  I )  ->  ( ( f `  ( (varFGrp `  I ) `  y
) ) (.g `  G
) ( (varFGrp `  I
) `  U. I ) )  =  ( (varFGrp `  I ) `  y
) )
9594mpteq2dva 4744 . . . . . . . . . . . . . . . 16  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  -> 
( y  e.  I  |->  ( ( f `  ( (varFGrp `  I ) `  y
) ) (.g `  G
) ( (varFGrp `  I
) `  U. I ) ) )  =  ( y  e.  I  |->  ( (varFGrp `  I ) `  y
) ) )
9665ffvelrnda 6359 . . . . . . . . . . . . . . . . 17  |-  ( ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  /\  y  e.  I )  ->  ( (varFGrp `  I ) `  y
)  e.  ( Base `  G ) )
9765feqmptd 6249 . . . . . . . . . . . . . . . . 17  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  -> 
(varFGrp `  I )  =  ( y  e.  I  |->  ( (varFGrp `  I ) `  y
) ) )
98 eqidd 2623 . . . . . . . . . . . . . . . . 17  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  -> 
( x  e.  (
Base `  G )  |->  ( ( f `  x ) (.g `  G
) ( (varFGrp `  I
) `  U. I ) ) )  =  ( x  e.  ( Base `  G )  |->  ( ( f `  x ) (.g `  G ) ( (varFGrp `  I ) `  U. I ) ) ) )
99 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( (varFGrp `  I
) `  y )  ->  ( f `  x
)  =  ( f `
 ( (varFGrp `  I
) `  y )
) )
10099oveq1d 6665 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( (varFGrp `  I
) `  y )  ->  ( ( f `  x ) (.g `  G
) ( (varFGrp `  I
) `  U. I ) )  =  ( ( f `  ( (varFGrp `  I ) `  y
) ) (.g `  G
) ( (varFGrp `  I
) `  U. I ) ) )
10196, 97, 98, 100fmptco 6396 . . . . . . . . . . . . . . . 16  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  -> 
( ( x  e.  ( Base `  G
)  |->  ( ( f `
 x ) (.g `  G ) ( (varFGrp `  I ) `  U. I ) ) )  o.  (varFGrp `  I ) )  =  ( y  e.  I  |->  ( ( f `  ( (varFGrp `  I ) `  y
) ) (.g `  G
) ( (varFGrp `  I
) `  U. I ) ) ) )
10295, 101, 973eqtr4d 2666 . . . . . . . . . . . . . . 15  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  -> 
( ( x  e.  ( Base `  G
)  |->  ( ( f `
 x ) (.g `  G ) ( (varFGrp `  I ) `  U. I ) ) )  o.  (varFGrp `  I ) )  =  (varFGrp `  I ) )
103 coeq1 5279 . . . . . . . . . . . . . . . . 17  |-  ( g  =  (  _I  |`  ( Base `  G ) )  ->  ( g  o.  (varFGrp `  I ) )  =  ( (  _I  |`  ( Base `  G ) )  o.  (varFGrp `  I ) ) )
104103eqeq1d 2624 . . . . . . . . . . . . . . . 16  |-  ( g  =  (  _I  |`  ( Base `  G ) )  ->  ( ( g  o.  (varFGrp `  I ) )  =  (varFGrp `  I )  <->  ( (  _I  |`  ( Base `  G
) )  o.  (varFGrp `  I
) )  =  (varFGrp `  I ) ) )
105 coeq1 5279 . . . . . . . . . . . . . . . . 17  |-  ( g  =  ( x  e.  ( Base `  G
)  |->  ( ( f `
 x ) (.g `  G ) ( (varFGrp `  I ) `  U. I ) ) )  ->  ( g  o.  (varFGrp `  I ) )  =  ( ( x  e.  ( Base `  G
)  |->  ( ( f `
 x ) (.g `  G ) ( (varFGrp `  I ) `  U. I ) ) )  o.  (varFGrp `  I ) ) )
106105eqeq1d 2624 . . . . . . . . . . . . . . . 16  |-  ( g  =  ( x  e.  ( Base `  G
)  |->  ( ( f `
 x ) (.g `  G ) ( (varFGrp `  I ) `  U. I ) ) )  ->  ( ( g  o.  (varFGrp `  I ) )  =  (varFGrp `  I )  <->  ( (
x  e.  ( Base `  G )  |->  ( ( f `  x ) (.g `  G ) ( (varFGrp `  I ) `  U. I ) ) )  o.  (varFGrp `  I ) )  =  (varFGrp `  I ) ) )
107104, 106rmoi 3530 . . . . . . . . . . . . . . 15  |-  ( ( E* g  e.  ( G  GrpHom  G ) ( g  o.  (varFGrp `  I
) )  =  (varFGrp `  I )  /\  (
(  _I  |`  ( Base `  G ) )  e.  ( G  GrpHom  G )  /\  ( (  _I  |`  ( Base `  G ) )  o.  (varFGrp `  I ) )  =  (varFGrp `  I ) )  /\  ( ( x  e.  ( Base `  G
)  |->  ( ( f `
 x ) (.g `  G ) ( (varFGrp `  I ) `  U. I ) ) )  e.  ( G  GrpHom  G )  /\  ( ( x  e.  ( Base `  G )  |->  ( ( f `  x ) (.g `  G ) ( (varFGrp `  I ) `  U. I ) ) )  o.  (varFGrp `  I ) )  =  (varFGrp `  I ) ) )  ->  (  _I  |`  ( Base `  G ) )  =  ( x  e.  ( Base `  G
)  |->  ( ( f `
 x ) (.g `  G ) ( (varFGrp `  I ) `  U. I ) ) ) )
10861, 64, 67, 79, 102, 107syl122anc 1335 . . . . . . . . . . . . . 14  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  -> 
(  _I  |`  ( Base `  G ) )  =  ( x  e.  ( Base `  G
)  |->  ( ( f `
 x ) (.g `  G ) ( (varFGrp `  I ) `  U. I ) ) ) )
10956, 108syl5eq 2668 . . . . . . . . . . . . 13  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  -> 
( x  e.  (
Base `  G )  |->  x )  =  ( x  e.  ( Base `  G )  |->  ( ( f `  x ) (.g `  G ) ( (varFGrp `  I ) `  U. I ) ) ) )
110 mpteqb 6299 . . . . . . . . . . . . . 14  |-  ( A. x  e.  ( Base `  G ) x  e.  ( Base `  G
)  ->  ( (
x  e.  ( Base `  G )  |->  x )  =  ( x  e.  ( Base `  G
)  |->  ( ( f `
 x ) (.g `  G ) ( (varFGrp `  I ) `  U. I ) ) )  <->  A. x  e.  ( Base `  G ) x  =  ( ( f `
 x ) (.g `  G ) ( (varFGrp `  I ) `  U. I ) ) ) )
111 id 22 . . . . . . . . . . . . . 14  |-  ( x  e.  ( Base `  G
)  ->  x  e.  ( Base `  G )
)
112110, 111mprg 2926 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( Base `  G )  |->  x )  =  ( x  e.  ( Base `  G
)  |->  ( ( f `
 x ) (.g `  G ) ( (varFGrp `  I ) `  U. I ) ) )  <->  A. x  e.  ( Base `  G ) x  =  ( ( f `
 x ) (.g `  G ) ( (varFGrp `  I ) `  U. I ) ) )
113109, 112sylib 208 . . . . . . . . . . . 12  |-  ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  ->  A. x  e.  ( Base `  G ) x  =  ( ( f `
 x ) (.g `  G ) ( (varFGrp `  I ) `  U. I ) ) )
114113r19.21bi 2932 . . . . . . . . . . 11  |-  ( ( ( I  ~~  1o  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  /\  x  e.  ( Base `  G ) )  ->  x  =  ( (
f `  x )
(.g `  G ) ( (varFGrp `  I ) `  U. I ) ) )
115114an32s 846 . . . . . . . . . 10  |-  ( ( ( I  ~~  1o  /\  x  e.  ( Base `  G ) )  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  ->  x  =  ( (
f `  x )
(.g `  G ) ( (varFGrp `  I ) `  U. I ) ) )
11670eqeq2d 2632 . . . . . . . . . . 11  |-  ( n  =  ( f `  x )  ->  (
x  =  ( n (.g `  G ) ( (varFGrp `  I ) `  U. I ) )  <->  x  =  ( ( f `  x ) (.g `  G
) ( (varFGrp `  I
) `  U. I ) ) ) )
117116rspcev 3309 . . . . . . . . . 10  |-  ( ( ( f `  x
)  e.  ZZ  /\  x  =  ( (
f `  x )
(.g `  G ) ( (varFGrp `  I ) `  U. I ) ) )  ->  E. n  e.  ZZ  x  =  ( n
(.g `  G ) ( (varFGrp `  I ) `  U. I ) ) )
11855, 115, 117syl2anc 693 . . . . . . . . 9  |-  ( ( ( I  ~~  1o  /\  x  e.  ( Base `  G ) )  /\  ( f  e.  ( G  GrpHomring
)  /\  ( f `  ( (varFGrp `  I ) `  U. I ) )  =  1 ) )  ->  E. n  e.  ZZ  x  =  ( n
(.g `  G ) ( (varFGrp `  I ) `  U. I ) ) )
119118expr 643 . . . . . . . 8  |-  ( ( ( I  ~~  1o  /\  x  e.  ( Base `  G ) )  /\  f  e.  ( G  GrpHomring )
)  ->  ( (
f `  ( (varFGrp `  I
) `  U. I ) )  =  1  ->  E. n  e.  ZZ  x  =  ( n
(.g `  G ) ( (varFGrp `  I ) `  U. I ) ) ) )
12051, 119syld 47 . . . . . . 7  |-  ( ( ( I  ~~  1o  /\  x  e.  ( Base `  G ) )  /\  f  e.  ( G  GrpHomring )
)  ->  ( (
f  o.  (varFGrp `  I
) )  =  { <. U. I ,  1
>. }  ->  E. n  e.  ZZ  x  =  ( n (.g `  G ) ( (varFGrp `  I ) `  U. I ) ) ) )
121120rexlimdva 3031 . . . . . 6  |-  ( ( I  ~~  1o  /\  x  e.  ( Base `  G ) )  -> 
( E. f  e.  ( G  GrpHomring ) ( f  o.  (varFGrp `  I ) )  =  { <. U. I ,  1
>. }  ->  E. n  e.  ZZ  x  =  ( n (.g `  G ) ( (varFGrp `  I ) `  U. I ) ) ) )
12242, 121mpd 15 . . . . 5  |-  ( ( I  ~~  1o  /\  x  e.  ( Base `  G ) )  ->  E. n  e.  ZZ  x  =  ( n
(.g `  G ) ( (varFGrp `  I ) `  U. I ) ) )
12316, 17, 21, 27, 122iscygd 18289 . . . 4  |-  ( I 
~~  1o  ->  G  e. CycGrp
)
12415, 123jaoi 394 . . 3  |-  ( ( I  ~<  1o  \/  I  ~~  1o )  ->  G  e. CycGrp )
1251, 124sylbi 207 . 2  |-  ( I  ~<_  1o  ->  G  e. CycGrp )
126 cygabl 18292 . . 3  |-  ( G  e. CycGrp  ->  G  e.  Abel )
1273frgpnabl 18278 . . . . 5  |-  ( 1o 
~<  I  ->  -.  G  e.  Abel )
128127con2i 134 . . . 4  |-  ( G  e.  Abel  ->  -.  1o  ~<  I )
129 ablgrp 18198 . . . . . 6  |-  ( G  e.  Abel  ->  G  e. 
Grp )
130 eqid 2622 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
13116, 130grpidcl 17450 . . . . . 6  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  ( Base `  G
) )
1323, 16elbasfv 15920 . . . . . 6  |-  ( ( 0g `  G )  e.  ( Base `  G
)  ->  I  e.  _V )
133129, 131, 1323syl 18 . . . . 5  |-  ( G  e.  Abel  ->  I  e. 
_V )
134 1onn 7719 . . . . . 6  |-  1o  e.  om
135 nnfi 8153 . . . . . 6  |-  ( 1o  e.  om  ->  1o  e.  Fin )
136134, 135ax-mp 5 . . . . 5  |-  1o  e.  Fin
137 fidomtri2 8820 . . . . 5  |-  ( ( I  e.  _V  /\  1o  e.  Fin )  -> 
( I  ~<_  1o  <->  -.  1o  ~<  I ) )
138133, 136, 137sylancl 694 . . . 4  |-  ( G  e.  Abel  ->  ( I  ~<_  1o  <->  -.  1o  ~<  I ) )
139128, 138mpbird 247 . . 3  |-  ( G  e.  Abel  ->  I  ~<_  1o )
140126, 139syl 17 . 2  |-  ( G  e. CycGrp  ->  I  ~<_  1o )
141125, 140impbii 199 1  |-  ( I  ~<_  1o  <->  G  e. CycGrp )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   E!wreu 2914   E*wrmo 2915   _Vcvv 3200   (/)c0 3915   {csn 4177   <.cop 4183   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729    _I cid 5023    |` cres 5116    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   omcom 7065   1oc1o 7553    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954   Fincfn 7955   1c1 9937   ZZcz 11377   Basecbs 15857   0gc0g 16100   Grpcgrp 17422  .gcmg 17540    GrpHom cghm 17657   ~FG cefg 18119  freeGrpcfrgp 18120  varFGrpcvrgp 18121   Abelcabl 18194  CycGrpccyg 18279  ℤringzring 19818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-reverse 13305  df-s2 13593  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-gsum 16103  df-imas 16168  df-qus 16169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-frmd 17386  df-vrmd 17387  df-grp 17425  df-minusg 17426  df-mulg 17541  df-subg 17591  df-ghm 17658  df-efg 18122  df-frgp 18123  df-vrgp 18124  df-cmn 18195  df-abl 18196  df-cyg 18280  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-subrg 18778  df-cnfld 19747  df-zring 19819
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator