MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptshft Structured version   Visualization version   Unicode version

Theorem gsummptshft 18336
Description: Index shift of a finite group sum over a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.)
Hypotheses
Ref Expression
gsummptshft.b  |-  B  =  ( Base `  G
)
gsummptshft.z  |-  .0.  =  ( 0g `  G )
gsummptshft.g  |-  ( ph  ->  G  e. CMnd )
gsummptshft.k  |-  ( ph  ->  K  e.  ZZ )
gsummptshft.m  |-  ( ph  ->  M  e.  ZZ )
gsummptshft.n  |-  ( ph  ->  N  e.  ZZ )
gsummptshft.a  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  B )
gsummptshft.c  |-  ( j  =  ( k  -  K )  ->  A  =  C )
Assertion
Ref Expression
gsummptshft  |-  ( ph  ->  ( G  gsumg  ( j  e.  ( M ... N ) 
|->  A ) )  =  ( G  gsumg  ( k  e.  ( ( M  +  K
) ... ( N  +  K ) )  |->  C ) ) )
Distinct variable groups:    A, k    B, j    C, j    j, k, K    j, M, k   
j, N, k    ph, j,
k
Allowed substitution hints:    A( j)    B( k)    C( k)    G( j, k)    .0. ( j, k)

Proof of Theorem gsummptshft
StepHypRef Expression
1 gsummptshft.b . . 3  |-  B  =  ( Base `  G
)
2 gsummptshft.z . . 3  |-  .0.  =  ( 0g `  G )
3 gsummptshft.g . . 3  |-  ( ph  ->  G  e. CMnd )
4 ovexd 6680 . . 3  |-  ( ph  ->  ( M ... N
)  e.  _V )
5 gsummptshft.a . . . 4  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  B )
6 eqid 2622 . . . 4  |-  ( j  e.  ( M ... N )  |->  A )  =  ( j  e.  ( M ... N
)  |->  A )
75, 6fmptd 6385 . . 3  |-  ( ph  ->  ( j  e.  ( M ... N ) 
|->  A ) : ( M ... N ) --> B )
8 fzfid 12772 . . . 4  |-  ( ph  ->  ( M ... N
)  e.  Fin )
9 fvex 6201 . . . . . 6  |-  ( 0g
`  G )  e. 
_V
102, 9eqeltri 2697 . . . . 5  |-  .0.  e.  _V
1110a1i 11 . . . 4  |-  ( ph  ->  .0.  e.  _V )
126, 8, 5, 11fsuppmptdm 8286 . . 3  |-  ( ph  ->  ( j  e.  ( M ... N ) 
|->  A ) finSupp  .0.  )
13 gsummptshft.k . . . 4  |-  ( ph  ->  K  e.  ZZ )
14 gsummptshft.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
15 gsummptshft.n . . . 4  |-  ( ph  ->  N  e.  ZZ )
1613, 14, 15mptfzshft 14510 . . 3  |-  ( ph  ->  ( k  e.  ( ( M  +  K
) ... ( N  +  K ) )  |->  ( k  -  K ) ) : ( ( M  +  K ) ... ( N  +  K ) ) -1-1-onto-> ( M ... N ) )
171, 2, 3, 4, 7, 12, 16gsumf1o 18317 . 2  |-  ( ph  ->  ( G  gsumg  ( j  e.  ( M ... N ) 
|->  A ) )  =  ( G  gsumg  ( ( j  e.  ( M ... N
)  |->  A )  o.  ( k  e.  ( ( M  +  K
) ... ( N  +  K ) )  |->  ( k  -  K ) ) ) ) )
18 elfzelz 12342 . . . . . . . 8  |-  ( k  e.  ( ( M  +  K ) ... ( N  +  K
) )  ->  k  e.  ZZ )
1918zcnd 11483 . . . . . . 7  |-  ( k  e.  ( ( M  +  K ) ... ( N  +  K
) )  ->  k  e.  CC )
2013zcnd 11483 . . . . . . 7  |-  ( ph  ->  K  e.  CC )
21 npcan 10290 . . . . . . 7  |-  ( ( k  e.  CC  /\  K  e.  CC )  ->  ( ( k  -  K )  +  K
)  =  k )
2219, 20, 21syl2anr 495 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ( M  +  K ) ... ( N  +  K )
) )  ->  (
( k  -  K
)  +  K )  =  k )
23 simpr 477 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ( M  +  K ) ... ( N  +  K )
) )  ->  k  e.  ( ( M  +  K ) ... ( N  +  K )
) )
2422, 23eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( M  +  K ) ... ( N  +  K )
) )  ->  (
( k  -  K
)  +  K )  e.  ( ( M  +  K ) ... ( N  +  K
) ) )
2514, 15jca 554 . . . . . . 7  |-  ( ph  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
2625adantr 481 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ( M  +  K ) ... ( N  +  K )
) )  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
2718adantl 482 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( M  +  K ) ... ( N  +  K )
) )  ->  k  e.  ZZ )
2813adantr 481 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( M  +  K ) ... ( N  +  K )
) )  ->  K  e.  ZZ )
2927, 28zsubcld 11487 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ( M  +  K ) ... ( N  +  K )
) )  ->  (
k  -  K )  e.  ZZ )
30 fzaddel 12375 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( k  -  K )  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( ( k  -  K )  e.  ( M ... N )  <-> 
( ( k  -  K )  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
3126, 29, 28, 30syl12anc 1324 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( M  +  K ) ... ( N  +  K )
) )  ->  (
( k  -  K
)  e.  ( M ... N )  <->  ( (
k  -  K )  +  K )  e.  ( ( M  +  K ) ... ( N  +  K )
) ) )
3224, 31mpbird 247 . . . 4  |-  ( (
ph  /\  k  e.  ( ( M  +  K ) ... ( N  +  K )
) )  ->  (
k  -  K )  e.  ( M ... N ) )
33 eqidd 2623 . . . 4  |-  ( ph  ->  ( k  e.  ( ( M  +  K
) ... ( N  +  K ) )  |->  ( k  -  K ) )  =  ( k  e.  ( ( M  +  K ) ... ( N  +  K
) )  |->  ( k  -  K ) ) )
34 eqidd 2623 . . . 4  |-  ( ph  ->  ( j  e.  ( M ... N ) 
|->  A )  =  ( j  e.  ( M ... N )  |->  A ) )
35 gsummptshft.c . . . 4  |-  ( j  =  ( k  -  K )  ->  A  =  C )
3632, 33, 34, 35fmptco 6396 . . 3  |-  ( ph  ->  ( ( j  e.  ( M ... N
)  |->  A )  o.  ( k  e.  ( ( M  +  K
) ... ( N  +  K ) )  |->  ( k  -  K ) ) )  =  ( k  e.  ( ( M  +  K ) ... ( N  +  K ) )  |->  C ) )
3736oveq2d 6666 . 2  |-  ( ph  ->  ( G  gsumg  ( ( j  e.  ( M ... N
)  |->  A )  o.  ( k  e.  ( ( M  +  K
) ... ( N  +  K ) )  |->  ( k  -  K ) ) ) )  =  ( G  gsumg  ( k  e.  ( ( M  +  K
) ... ( N  +  K ) )  |->  C ) ) )
3817, 37eqtrd 2656 1  |-  ( ph  ->  ( G  gsumg  ( j  e.  ( M ... N ) 
|->  A ) )  =  ( G  gsumg  ( k  e.  ( ( M  +  K
) ... ( N  +  K ) )  |->  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    |-> cmpt 4729    o. ccom 5118   ` cfv 5888  (class class class)co 6650   CCcc 9934    + caddc 9939    - cmin 10266   ZZcz 11377   ...cfz 12326   Basecbs 15857   0gc0g 16100    gsumg cgsu 16101  CMndccmn 18193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-cntz 17750  df-cmn 18195
This theorem is referenced by:  srgbinomlem4  18543  cpmadugsumlemF  20681
  Copyright terms: Public domain W3C validator