Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1l6j Structured version   Visualization version   Unicode version

Theorem hdmap1l6j 37109
Description: Lemmma for hdmap1l6 37111. Eliminate  ( N { Y } ) = ( N  { Z } ) hypothesis. (Contributed by NM, 1-May-2015.)
Hypotheses
Ref Expression
hdmap1l6.h  |-  H  =  ( LHyp `  K
)
hdmap1l6.u  |-  U  =  ( ( DVecH `  K
) `  W )
hdmap1l6.v  |-  V  =  ( Base `  U
)
hdmap1l6.p  |-  .+  =  ( +g  `  U )
hdmap1l6.s  |-  .-  =  ( -g `  U )
hdmap1l6c.o  |-  .0.  =  ( 0g `  U )
hdmap1l6.n  |-  N  =  ( LSpan `  U )
hdmap1l6.c  |-  C  =  ( (LCDual `  K
) `  W )
hdmap1l6.d  |-  D  =  ( Base `  C
)
hdmap1l6.a  |-  .+b  =  ( +g  `  C )
hdmap1l6.r  |-  R  =  ( -g `  C
)
hdmap1l6.q  |-  Q  =  ( 0g `  C
)
hdmap1l6.l  |-  L  =  ( LSpan `  C )
hdmap1l6.m  |-  M  =  ( (mapd `  K
) `  W )
hdmap1l6.i  |-  I  =  ( (HDMap1 `  K
) `  W )
hdmap1l6.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
hdmap1l6.f  |-  ( ph  ->  F  e.  D )
hdmap1l6cl.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
hdmap1l6.mn  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )
hdmap1l6i.xn  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
hdmap1l6i.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
hdmap1l6i.z  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
Assertion
Ref Expression
hdmap1l6j  |-  ( ph  ->  ( I `  <. X ,  F ,  ( Y  .+  Z )
>. )  =  (
( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )

Proof of Theorem hdmap1l6j
StepHypRef Expression
1 hdmap1l6.h . . 3  |-  H  =  ( LHyp `  K
)
2 hdmap1l6.u . . 3  |-  U  =  ( ( DVecH `  K
) `  W )
3 hdmap1l6.v . . 3  |-  V  =  ( Base `  U
)
4 hdmap1l6.p . . 3  |-  .+  =  ( +g  `  U )
5 hdmap1l6.s . . 3  |-  .-  =  ( -g `  U )
6 hdmap1l6c.o . . 3  |-  .0.  =  ( 0g `  U )
7 hdmap1l6.n . . 3  |-  N  =  ( LSpan `  U )
8 hdmap1l6.c . . 3  |-  C  =  ( (LCDual `  K
) `  W )
9 hdmap1l6.d . . 3  |-  D  =  ( Base `  C
)
10 hdmap1l6.a . . 3  |-  .+b  =  ( +g  `  C )
11 hdmap1l6.r . . 3  |-  R  =  ( -g `  C
)
12 hdmap1l6.q . . 3  |-  Q  =  ( 0g `  C
)
13 hdmap1l6.l . . 3  |-  L  =  ( LSpan `  C )
14 hdmap1l6.m . . 3  |-  M  =  ( (mapd `  K
) `  W )
15 hdmap1l6.i . . 3  |-  I  =  ( (HDMap1 `  K
) `  W )
16 hdmap1l6.k . . . 4  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
1716adantr 481 . . 3  |-  ( (
ph  /\  ( N `  { Y } )  =  ( N `  { Z } ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
18 hdmap1l6.f . . . 4  |-  ( ph  ->  F  e.  D )
1918adantr 481 . . 3  |-  ( (
ph  /\  ( N `  { Y } )  =  ( N `  { Z } ) )  ->  F  e.  D
)
20 hdmap1l6cl.x . . . 4  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
2120adantr 481 . . 3  |-  ( (
ph  /\  ( N `  { Y } )  =  ( N `  { Z } ) )  ->  X  e.  ( V  \  {  .0.  } ) )
22 hdmap1l6.mn . . . 4  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )
2322adantr 481 . . 3  |-  ( (
ph  /\  ( N `  { Y } )  =  ( N `  { Z } ) )  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )
24 hdmap1l6i.xn . . . 4  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
2524adantr 481 . . 3  |-  ( (
ph  /\  ( N `  { Y } )  =  ( N `  { Z } ) )  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
26 hdmap1l6i.y . . . 4  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
2726adantr 481 . . 3  |-  ( (
ph  /\  ( N `  { Y } )  =  ( N `  { Z } ) )  ->  Y  e.  ( V  \  {  .0.  } ) )
28 hdmap1l6i.z . . . 4  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
2928adantr 481 . . 3  |-  ( (
ph  /\  ( N `  { Y } )  =  ( N `  { Z } ) )  ->  Z  e.  ( V  \  {  .0.  } ) )
30 simpr 477 . . 3  |-  ( (
ph  /\  ( N `  { Y } )  =  ( N `  { Z } ) )  ->  ( N `  { Y } )  =  ( N `  { Z } ) )
311, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 23, 25, 27, 29, 30hdmap1l6i 37108 . 2  |-  ( (
ph  /\  ( N `  { Y } )  =  ( N `  { Z } ) )  ->  ( I `  <. X ,  F , 
( Y  .+  Z
) >. )  =  ( ( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
3216adantr 481 . . 3  |-  ( (
ph  /\  ( N `  { Y } )  =/=  ( N `  { Z } ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
3318adantr 481 . . 3  |-  ( (
ph  /\  ( N `  { Y } )  =/=  ( N `  { Z } ) )  ->  F  e.  D
)
3420adantr 481 . . 3  |-  ( (
ph  /\  ( N `  { Y } )  =/=  ( N `  { Z } ) )  ->  X  e.  ( V  \  {  .0.  } ) )
3522adantr 481 . . 3  |-  ( (
ph  /\  ( N `  { Y } )  =/=  ( N `  { Z } ) )  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )
3626adantr 481 . . 3  |-  ( (
ph  /\  ( N `  { Y } )  =/=  ( N `  { Z } ) )  ->  Y  e.  ( V  \  {  .0.  } ) )
3728adantr 481 . . 3  |-  ( (
ph  /\  ( N `  { Y } )  =/=  ( N `  { Z } ) )  ->  Z  e.  ( V  \  {  .0.  } ) )
3824adantr 481 . . 3  |-  ( (
ph  /\  ( N `  { Y } )  =/=  ( N `  { Z } ) )  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
39 simpr 477 . . 3  |-  ( (
ph  /\  ( N `  { Y } )  =/=  ( N `  { Z } ) )  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
40 eqidd 2623 . . 3  |-  ( (
ph  /\  ( N `  { Y } )  =/=  ( N `  { Z } ) )  ->  ( I `  <. X ,  F ,  Y >. )  =  ( I `  <. X ,  F ,  Y >. ) )
41 eqidd 2623 . . 3  |-  ( (
ph  /\  ( N `  { Y } )  =/=  ( N `  { Z } ) )  ->  ( I `  <. X ,  F ,  Z >. )  =  ( I `  <. X ,  F ,  Z >. ) )
421, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41hdmap1l6a 37099 . 2  |-  ( (
ph  /\  ( N `  { Y } )  =/=  ( N `  { Z } ) )  ->  ( I `  <. X ,  F , 
( Y  .+  Z
) >. )  =  ( ( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
4331, 42pm2.61dane 2881 1  |-  ( ph  ->  ( I `  <. X ,  F ,  ( Y  .+  Z )
>. )  =  (
( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571   {csn 4177   {cpr 4179   <.cotp 4185   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100   -gcsg 17424   LSpanclspn 18971   HLchlt 34637   LHypclh 35270   DVecHcdvh 36367  LCDualclcd 36875  mapdcmpd 36913  HDMap1chdma1 37081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-undef 7399  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-mre 16246  df-mrc 16247  df-acs 16249  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-oppg 17776  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lsatoms 34263  df-lshyp 34264  df-lcv 34306  df-lfl 34345  df-lkr 34373  df-ldual 34411  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tgrp 36031  df-tendo 36043  df-edring 36045  df-dveca 36291  df-disoa 36318  df-dvech 36368  df-dib 36428  df-dic 36462  df-dih 36518  df-doch 36637  df-djh 36684  df-lcdual 36876  df-mapd 36914  df-hdmap1 37083
This theorem is referenced by:  hdmap1l6k  37110
  Copyright terms: Public domain W3C validator