| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem11 | Structured version Visualization version Unicode version | ||
| Description: If there is a partition, than the lower bound is strictly less than the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fourierdlem11.p |
|
| fourierdlem11.m |
|
| fourierdlem11.q |
|
| Ref | Expression |
|---|---|
| fourierdlem11 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fourierdlem11.q |
. . . . . . 7
| |
| 2 | fourierdlem11.m |
. . . . . . . 8
| |
| 3 | fourierdlem11.p |
. . . . . . . . 9
| |
| 4 | 3 | fourierdlem2 40326 |
. . . . . . . 8
|
| 5 | 2, 4 | syl 17 |
. . . . . . 7
|
| 6 | 1, 5 | mpbid 222 |
. . . . . 6
|
| 7 | 6 | simprd 479 |
. . . . 5
|
| 8 | 7 | simpld 475 |
. . . 4
|
| 9 | 8 | simpld 475 |
. . 3
|
| 10 | 6 | simpld 475 |
. . . . 5
|
| 11 | elmapi 7879 |
. . . . 5
| |
| 12 | 10, 11 | syl 17 |
. . . 4
|
| 13 | 0red 10041 |
. . . . . 6
| |
| 14 | 13 | leidd 10594 |
. . . . 5
|
| 15 | 2 | nnred 11035 |
. . . . . 6
|
| 16 | 2 | nngt0d 11064 |
. . . . . 6
|
| 17 | 13, 15, 16 | ltled 10185 |
. . . . 5
|
| 18 | 0zd 11389 |
. . . . . 6
| |
| 19 | 2 | nnzd 11481 |
. . . . . 6
|
| 20 | elfz 12332 |
. . . . . 6
| |
| 21 | 18, 18, 19, 20 | syl3anc 1326 |
. . . . 5
|
| 22 | 14, 17, 21 | mpbir2and 957 |
. . . 4
|
| 23 | 12, 22 | ffvelrnd 6360 |
. . 3
|
| 24 | 9, 23 | eqeltrrd 2702 |
. 2
|
| 25 | 8 | simprd 479 |
. . 3
|
| 26 | 15 | leidd 10594 |
. . . . 5
|
| 27 | elfz 12332 |
. . . . . 6
| |
| 28 | 19, 18, 19, 27 | syl3anc 1326 |
. . . . 5
|
| 29 | 17, 26, 28 | mpbir2and 957 |
. . . 4
|
| 30 | 12, 29 | ffvelrnd 6360 |
. . 3
|
| 31 | 25, 30 | eqeltrrd 2702 |
. 2
|
| 32 | 0le1 10551 |
. . . . . 6
| |
| 33 | 32 | a1i 11 |
. . . . 5
|
| 34 | 2 | nnge1d 11063 |
. . . . 5
|
| 35 | 1zzd 11408 |
. . . . . 6
| |
| 36 | elfz 12332 |
. . . . . 6
| |
| 37 | 35, 18, 19, 36 | syl3anc 1326 |
. . . . 5
|
| 38 | 33, 34, 37 | mpbir2and 957 |
. . . 4
|
| 39 | 12, 38 | ffvelrnd 6360 |
. . 3
|
| 40 | elfzo 12472 |
. . . . . . 7
| |
| 41 | 18, 18, 19, 40 | syl3anc 1326 |
. . . . . 6
|
| 42 | 14, 16, 41 | mpbir2and 957 |
. . . . 5
|
| 43 | 0re 10040 |
. . . . . 6
| |
| 44 | eleq1 2689 |
. . . . . . . . 9
| |
| 45 | 44 | anbi2d 740 |
. . . . . . . 8
|
| 46 | fveq2 6191 |
. . . . . . . . 9
| |
| 47 | oveq1 6657 |
. . . . . . . . . 10
| |
| 48 | 47 | fveq2d 6195 |
. . . . . . . . 9
|
| 49 | 46, 48 | breq12d 4666 |
. . . . . . . 8
|
| 50 | 45, 49 | imbi12d 334 |
. . . . . . 7
|
| 51 | 7 | simprd 479 |
. . . . . . . 8
|
| 52 | 51 | r19.21bi 2932 |
. . . . . . 7
|
| 53 | 50, 52 | vtoclg 3266 |
. . . . . 6
|
| 54 | 43, 53 | ax-mp 5 |
. . . . 5
|
| 55 | 42, 54 | mpdan 702 |
. . . 4
|
| 56 | 0p1e1 11132 |
. . . . . 6
| |
| 57 | 56 | a1i 11 |
. . . . 5
|
| 58 | 57 | fveq2d 6195 |
. . . 4
|
| 59 | 55, 9, 58 | 3brtr3d 4684 |
. . 3
|
| 60 | nnuz 11723 |
. . . . . 6
| |
| 61 | 2, 60 | syl6eleq 2711 |
. . . . 5
|
| 62 | 12 | adantr 481 |
. . . . . 6
|
| 63 | 0red 10041 |
. . . . . . . . 9
| |
| 64 | elfzelz 12342 |
. . . . . . . . . 10
| |
| 65 | 64 | zred 11482 |
. . . . . . . . 9
|
| 66 | 1red 10055 |
. . . . . . . . . 10
| |
| 67 | 0lt1 10550 |
. . . . . . . . . . 11
| |
| 68 | 67 | a1i 11 |
. . . . . . . . . 10
|
| 69 | elfzle1 12344 |
. . . . . . . . . 10
| |
| 70 | 63, 66, 65, 68, 69 | ltletrd 10197 |
. . . . . . . . 9
|
| 71 | 63, 65, 70 | ltled 10185 |
. . . . . . . 8
|
| 72 | elfzle2 12345 |
. . . . . . . 8
| |
| 73 | 0zd 11389 |
. . . . . . . . 9
| |
| 74 | elfzel2 12340 |
. . . . . . . . 9
| |
| 75 | elfz 12332 |
. . . . . . . . 9
| |
| 76 | 64, 73, 74, 75 | syl3anc 1326 |
. . . . . . . 8
|
| 77 | 71, 72, 76 | mpbir2and 957 |
. . . . . . 7
|
| 78 | 77 | adantl 482 |
. . . . . 6
|
| 79 | 62, 78 | ffvelrnd 6360 |
. . . . 5
|
| 80 | 12 | adantr 481 |
. . . . . . 7
|
| 81 | 0red 10041 |
. . . . . . . . . 10
| |
| 82 | elfzelz 12342 |
. . . . . . . . . . 11
| |
| 83 | 82 | zred 11482 |
. . . . . . . . . 10
|
| 84 | 1red 10055 |
. . . . . . . . . . 11
| |
| 85 | 67 | a1i 11 |
. . . . . . . . . . 11
|
| 86 | elfzle1 12344 |
. . . . . . . . . . 11
| |
| 87 | 81, 84, 83, 85, 86 | ltletrd 10197 |
. . . . . . . . . 10
|
| 88 | 81, 83, 87 | ltled 10185 |
. . . . . . . . 9
|
| 89 | 88 | adantl 482 |
. . . . . . . 8
|
| 90 | 83 | adantl 482 |
. . . . . . . . 9
|
| 91 | 15 | adantr 481 |
. . . . . . . . 9
|
| 92 | peano2rem 10348 |
. . . . . . . . . . 11
| |
| 93 | 91, 92 | syl 17 |
. . . . . . . . . 10
|
| 94 | elfzle2 12345 |
. . . . . . . . . . 11
| |
| 95 | 94 | adantl 482 |
. . . . . . . . . 10
|
| 96 | 91 | ltm1d 10956 |
. . . . . . . . . 10
|
| 97 | 90, 93, 91, 95, 96 | lelttrd 10195 |
. . . . . . . . 9
|
| 98 | 90, 91, 97 | ltled 10185 |
. . . . . . . 8
|
| 99 | 82 | adantl 482 |
. . . . . . . . 9
|
| 100 | 0zd 11389 |
. . . . . . . . 9
| |
| 101 | 19 | adantr 481 |
. . . . . . . . 9
|
| 102 | 99, 100, 101, 75 | syl3anc 1326 |
. . . . . . . 8
|
| 103 | 89, 98, 102 | mpbir2and 957 |
. . . . . . 7
|
| 104 | 80, 103 | ffvelrnd 6360 |
. . . . . 6
|
| 105 | 0red 10041 |
. . . . . . . . 9
| |
| 106 | peano2re 10209 |
. . . . . . . . . 10
| |
| 107 | 90, 106 | syl 17 |
. . . . . . . . 9
|
| 108 | 1red 10055 |
. . . . . . . . . 10
| |
| 109 | 67 | a1i 11 |
. . . . . . . . . 10
|
| 110 | 83, 106 | syl 17 |
. . . . . . . . . . . 12
|
| 111 | 83 | ltp1d 10954 |
. . . . . . . . . . . 12
|
| 112 | 84, 83, 110, 86, 111 | lelttrd 10195 |
. . . . . . . . . . 11
|
| 113 | 112 | adantl 482 |
. . . . . . . . . 10
|
| 114 | 105, 108, 107, 109, 113 | lttrd 10198 |
. . . . . . . . 9
|
| 115 | 105, 107, 114 | ltled 10185 |
. . . . . . . 8
|
| 116 | 90, 93, 108, 95 | leadd1dd 10641 |
. . . . . . . . 9
|
| 117 | 2 | nncnd 11036 |
. . . . . . . . . . 11
|
| 118 | 1cnd 10056 |
. . . . . . . . . . 11
| |
| 119 | 117, 118 | npcand 10396 |
. . . . . . . . . 10
|
| 120 | 119 | adantr 481 |
. . . . . . . . 9
|
| 121 | 116, 120 | breqtrd 4679 |
. . . . . . . 8
|
| 122 | 99 | peano2zd 11485 |
. . . . . . . . 9
|
| 123 | elfz 12332 |
. . . . . . . . 9
| |
| 124 | 122, 100, 101, 123 | syl3anc 1326 |
. . . . . . . 8
|
| 125 | 115, 121, 124 | mpbir2and 957 |
. . . . . . 7
|
| 126 | 80, 125 | ffvelrnd 6360 |
. . . . . 6
|
| 127 | elfzo 12472 |
. . . . . . . . 9
| |
| 128 | 99, 100, 101, 127 | syl3anc 1326 |
. . . . . . . 8
|
| 129 | 89, 97, 128 | mpbir2and 957 |
. . . . . . 7
|
| 130 | 129, 52 | syldan 487 |
. . . . . 6
|
| 131 | 104, 126, 130 | ltled 10185 |
. . . . 5
|
| 132 | 61, 79, 131 | monoord 12831 |
. . . 4
|
| 133 | 132, 25 | breqtrd 4679 |
. . 3
|
| 134 | 24, 39, 31, 59, 133 | ltletrd 10197 |
. 2
|
| 135 | 24, 31, 134 | 3jca 1242 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 |
| This theorem is referenced by: fourierdlem37 40361 fourierdlem54 40377 fourierdlem63 40386 fourierdlem64 40387 fourierdlem65 40388 fourierdlem69 40392 fourierdlem79 40402 fourierdlem89 40412 fourierdlem90 40413 fourierdlem91 40414 fourierdlem107 40430 fourierdlem109 40432 |
| Copyright terms: Public domain | W3C validator |