MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivthle Structured version   Visualization version   Unicode version

Theorem ivthle 23225
Description: The intermediate value theorem with weak inequality, increasing case. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
ivth.1  |-  ( ph  ->  A  e.  RR )
ivth.2  |-  ( ph  ->  B  e.  RR )
ivth.3  |-  ( ph  ->  U  e.  RR )
ivth.4  |-  ( ph  ->  A  <  B )
ivth.5  |-  ( ph  ->  ( A [,] B
)  C_  D )
ivth.7  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
ivth.8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
ivthle.9  |-  ( ph  ->  ( ( F `  A )  <_  U  /\  U  <_  ( F `
 B ) ) )
Assertion
Ref Expression
ivthle  |-  ( ph  ->  E. c  e.  ( A [,] B ) ( F `  c
)  =  U )
Distinct variable groups:    x, c, B    D, c, x    F, c, x    ph, c, x    A, c, x    U, c, x

Proof of Theorem ivthle
StepHypRef Expression
1 ioossicc 12259 . . . . 5  |-  ( A (,) B )  C_  ( A [,] B )
2 ivth.1 . . . . . . 7  |-  ( ph  ->  A  e.  RR )
32adantr 481 . . . . . 6  |-  ( (
ph  /\  ( ( F `  A )  <  U  /\  U  < 
( F `  B
) ) )  ->  A  e.  RR )
4 ivth.2 . . . . . . 7  |-  ( ph  ->  B  e.  RR )
54adantr 481 . . . . . 6  |-  ( (
ph  /\  ( ( F `  A )  <  U  /\  U  < 
( F `  B
) ) )  ->  B  e.  RR )
6 ivth.3 . . . . . . 7  |-  ( ph  ->  U  e.  RR )
76adantr 481 . . . . . 6  |-  ( (
ph  /\  ( ( F `  A )  <  U  /\  U  < 
( F `  B
) ) )  ->  U  e.  RR )
8 ivth.4 . . . . . . 7  |-  ( ph  ->  A  <  B )
98adantr 481 . . . . . 6  |-  ( (
ph  /\  ( ( F `  A )  <  U  /\  U  < 
( F `  B
) ) )  ->  A  <  B )
10 ivth.5 . . . . . . 7  |-  ( ph  ->  ( A [,] B
)  C_  D )
1110adantr 481 . . . . . 6  |-  ( (
ph  /\  ( ( F `  A )  <  U  /\  U  < 
( F `  B
) ) )  -> 
( A [,] B
)  C_  D )
12 ivth.7 . . . . . . 7  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
1312adantr 481 . . . . . 6  |-  ( (
ph  /\  ( ( F `  A )  <  U  /\  U  < 
( F `  B
) ) )  ->  F  e.  ( D -cn->
CC ) )
14 ivth.8 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
1514adantlr 751 . . . . . 6  |-  ( ( ( ph  /\  (
( F `  A
)  <  U  /\  U  <  ( F `  B ) ) )  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
16 simpr 477 . . . . . 6  |-  ( (
ph  /\  ( ( F `  A )  <  U  /\  U  < 
( F `  B
) ) )  -> 
( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
173, 5, 7, 9, 11, 13, 15, 16ivth 23223 . . . . 5  |-  ( (
ph  /\  ( ( F `  A )  <  U  /\  U  < 
( F `  B
) ) )  ->  E. c  e.  ( A (,) B ) ( F `  c )  =  U )
18 ssrexv 3667 . . . . 5  |-  ( ( A (,) B ) 
C_  ( A [,] B )  ->  ( E. c  e.  ( A (,) B ) ( F `  c )  =  U  ->  E. c  e.  ( A [,] B
) ( F `  c )  =  U ) )
191, 17, 18mpsyl 68 . . . 4  |-  ( (
ph  /\  ( ( F `  A )  <  U  /\  U  < 
( F `  B
) ) )  ->  E. c  e.  ( A [,] B ) ( F `  c )  =  U )
2019anassrs 680 . . 3  |-  ( ( ( ph  /\  ( F `  A )  <  U )  /\  U  <  ( F `  B
) )  ->  E. c  e.  ( A [,] B
) ( F `  c )  =  U )
212rexrd 10089 . . . . . 6  |-  ( ph  ->  A  e.  RR* )
224rexrd 10089 . . . . . 6  |-  ( ph  ->  B  e.  RR* )
232, 4, 8ltled 10185 . . . . . 6  |-  ( ph  ->  A  <_  B )
24 ubicc2 12289 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )
2521, 22, 23, 24syl3anc 1326 . . . . 5  |-  ( ph  ->  B  e.  ( A [,] B ) )
26 eqcom 2629 . . . . . . 7  |-  ( ( F `  c )  =  U  <->  U  =  ( F `  c ) )
27 fveq2 6191 . . . . . . . 8  |-  ( c  =  B  ->  ( F `  c )  =  ( F `  B ) )
2827eqeq2d 2632 . . . . . . 7  |-  ( c  =  B  ->  ( U  =  ( F `  c )  <->  U  =  ( F `  B ) ) )
2926, 28syl5bb 272 . . . . . 6  |-  ( c  =  B  ->  (
( F `  c
)  =  U  <->  U  =  ( F `  B ) ) )
3029rspcev 3309 . . . . 5  |-  ( ( B  e.  ( A [,] B )  /\  U  =  ( F `  B ) )  ->  E. c  e.  ( A [,] B ) ( F `  c )  =  U )
3125, 30sylan 488 . . . 4  |-  ( (
ph  /\  U  =  ( F `  B ) )  ->  E. c  e.  ( A [,] B
) ( F `  c )  =  U )
3231adantlr 751 . . 3  |-  ( ( ( ph  /\  ( F `  A )  <  U )  /\  U  =  ( F `  B ) )  ->  E. c  e.  ( A [,] B ) ( F `  c )  =  U )
33 ivthle.9 . . . . . 6  |-  ( ph  ->  ( ( F `  A )  <_  U  /\  U  <_  ( F `
 B ) ) )
3433simprd 479 . . . . 5  |-  ( ph  ->  U  <_  ( F `  B ) )
3514ralrimiva 2966 . . . . . . 7  |-  ( ph  ->  A. x  e.  ( A [,] B ) ( F `  x
)  e.  RR )
36 fveq2 6191 . . . . . . . . 9  |-  ( x  =  B  ->  ( F `  x )  =  ( F `  B ) )
3736eleq1d 2686 . . . . . . . 8  |-  ( x  =  B  ->  (
( F `  x
)  e.  RR  <->  ( F `  B )  e.  RR ) )
3837rspcv 3305 . . . . . . 7  |-  ( B  e.  ( A [,] B )  ->  ( A. x  e.  ( A [,] B ) ( F `  x )  e.  RR  ->  ( F `  B )  e.  RR ) )
3925, 35, 38sylc 65 . . . . . 6  |-  ( ph  ->  ( F `  B
)  e.  RR )
406, 39leloed 10180 . . . . 5  |-  ( ph  ->  ( U  <_  ( F `  B )  <->  ( U  <  ( F `
 B )  \/  U  =  ( F `
 B ) ) ) )
4134, 40mpbid 222 . . . 4  |-  ( ph  ->  ( U  <  ( F `  B )  \/  U  =  ( F `  B )
) )
4241adantr 481 . . 3  |-  ( (
ph  /\  ( F `  A )  <  U
)  ->  ( U  <  ( F `  B
)  \/  U  =  ( F `  B
) ) )
4320, 32, 42mpjaodan 827 . 2  |-  ( (
ph  /\  ( F `  A )  <  U
)  ->  E. c  e.  ( A [,] B
) ( F `  c )  =  U )
44 lbicc2 12288 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
4521, 22, 23, 44syl3anc 1326 . . 3  |-  ( ph  ->  A  e.  ( A [,] B ) )
46 fveq2 6191 . . . . 5  |-  ( c  =  A  ->  ( F `  c )  =  ( F `  A ) )
4746eqeq1d 2624 . . . 4  |-  ( c  =  A  ->  (
( F `  c
)  =  U  <->  ( F `  A )  =  U ) )
4847rspcev 3309 . . 3  |-  ( ( A  e.  ( A [,] B )  /\  ( F `  A )  =  U )  ->  E. c  e.  ( A [,] B ) ( F `  c )  =  U )
4945, 48sylan 488 . 2  |-  ( (
ph  /\  ( F `  A )  =  U )  ->  E. c  e.  ( A [,] B
) ( F `  c )  =  U )
5033simpld 475 . . 3  |-  ( ph  ->  ( F `  A
)  <_  U )
51 fveq2 6191 . . . . . . 7  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
5251eleq1d 2686 . . . . . 6  |-  ( x  =  A  ->  (
( F `  x
)  e.  RR  <->  ( F `  A )  e.  RR ) )
5352rspcv 3305 . . . . 5  |-  ( A  e.  ( A [,] B )  ->  ( A. x  e.  ( A [,] B ) ( F `  x )  e.  RR  ->  ( F `  A )  e.  RR ) )
5445, 35, 53sylc 65 . . . 4  |-  ( ph  ->  ( F `  A
)  e.  RR )
5554, 6leloed 10180 . . 3  |-  ( ph  ->  ( ( F `  A )  <_  U  <->  ( ( F `  A
)  <  U  \/  ( F `  A )  =  U ) ) )
5650, 55mpbid 222 . 2  |-  ( ph  ->  ( ( F `  A )  <  U  \/  ( F `  A
)  =  U ) )
5743, 49, 56mpjaodan 827 1  |-  ( ph  ->  E. c  e.  ( A [,] B ) ( F `  c
)  =  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   RR*cxr 10073    < clt 10074    <_ cle 10075   (,)cioo 12175   [,]cicc 12178   -cn->ccncf 22679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ioo 12179  df-icc 12182  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-cncf 22681
This theorem is referenced by:  ivthicc  23227  volivth  23375
  Copyright terms: Public domain W3C validator