MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volivth Structured version   Visualization version   Unicode version

Theorem volivth 23375
Description: The Intermediate Value Theorem for the Lebesgue volume function. For any positive  B  <_  ( vol `  A ), there is a measurable subset of  A whose volume is  B. (Contributed by Mario Carneiro, 30-Aug-2014.)
Assertion
Ref Expression
volivth  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  ->  E. x  e.  dom  vol ( x  C_  A  /\  ( vol `  x
)  =  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem volivth
Dummy variables  u  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 790 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  ->  A  e.  dom  vol )
2 mnfxr 10096 . . . . . 6  |- -oo  e.  RR*
32a1i 11 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  -> -oo  e.  RR* )
4 iccssxr 12256 . . . . . . 7  |-  ( 0 [,] ( vol `  A
) )  C_  RR*
5 simpr 477 . . . . . . 7  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  ->  B  e.  ( 0 [,] ( vol `  A
) ) )
64, 5sseldi 3601 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  ->  B  e.  RR* )
76adantr 481 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  ->  B  e.  RR* )
8 iccssxr 12256 . . . . . . . 8  |-  ( 0 [,] +oo )  C_  RR*
9 volf 23297 . . . . . . . . 9  |-  vol : dom  vol --> ( 0 [,] +oo )
109ffvelrni 6358 . . . . . . . 8  |-  ( A  e.  dom  vol  ->  ( vol `  A )  e.  ( 0 [,] +oo ) )
118, 10sseldi 3601 . . . . . . 7  |-  ( A  e.  dom  vol  ->  ( vol `  A )  e.  RR* )
1211adantr 481 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  -> 
( vol `  A
)  e.  RR* )
1312adantr 481 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  ->  ( vol `  A
)  e.  RR* )
14 0xr 10086 . . . . . . . . . 10  |-  0  e.  RR*
15 elicc1 12219 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  ( vol `  A )  e. 
RR* )  ->  ( B  e.  ( 0 [,] ( vol `  A
) )  <->  ( B  e.  RR*  /\  0  <_  B  /\  B  <_  ( vol `  A ) ) ) )
1614, 12, 15sylancr 695 . . . . . . . . 9  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  -> 
( B  e.  ( 0 [,] ( vol `  A ) )  <->  ( B  e.  RR*  /\  0  <_  B  /\  B  <_  ( vol `  A ) ) ) )
175, 16mpbid 222 . . . . . . . 8  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  -> 
( B  e.  RR*  /\  0  <_  B  /\  B  <_  ( vol `  A
) ) )
1817simp2d 1074 . . . . . . 7  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  -> 
0  <_  B )
1918adantr 481 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  ->  0  <_  B
)
20 mnflt0 11959 . . . . . . . 8  |- -oo  <  0
21 xrltletr 11988 . . . . . . . 8  |-  ( ( -oo  e.  RR*  /\  0  e.  RR*  /\  B  e. 
RR* )  ->  (
( -oo  <  0  /\  0  <_  B )  -> -oo  <  B ) )
2220, 21mpani 712 . . . . . . 7  |-  ( ( -oo  e.  RR*  /\  0  e.  RR*  /\  B  e. 
RR* )  ->  (
0  <_  B  -> -oo 
<  B ) )
232, 14, 22mp3an12 1414 . . . . . 6  |-  ( B  e.  RR*  ->  ( 0  <_  B  -> -oo  <  B ) )
247, 19, 23sylc 65 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  -> -oo  <  B )
25 simpr 477 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  ->  B  <  ( vol `  A ) )
26 xrre2 12001 . . . . 5  |-  ( ( ( -oo  e.  RR*  /\  B  e.  RR*  /\  ( vol `  A )  e. 
RR* )  /\  ( -oo  <  B  /\  B  <  ( vol `  A
) ) )  ->  B  e.  RR )
273, 7, 13, 24, 25, 26syl32anc 1334 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  ->  B  e.  RR )
28 volsup2 23373 . . . 4  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  E. n  e.  NN  B  <  ( vol `  ( A  i^i  ( -u n [,] n
) ) ) )
291, 27, 25, 28syl3anc 1326 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  ->  E. n  e.  NN  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) )
30 nnre 11027 . . . . . . 7  |-  ( n  e.  NN  ->  n  e.  RR )
3130ad2antrl 764 . . . . . 6  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  n  e.  RR )
3231renegcld 10457 . . . . 5  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  -u n  e.  RR )
3327adantr 481 . . . . 5  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  B  e.  RR )
34 0red 10041 . . . . . 6  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  0  e.  RR )
35 nngt0 11049 . . . . . . . 8  |-  ( n  e.  NN  ->  0  <  n )
3635ad2antrl 764 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  0  <  n )
3731lt0neg2d 10598 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  (
0  <  n  <->  -u n  <  0 ) )
3836, 37mpbid 222 . . . . . 6  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  -u n  <  0 )
3932, 34, 31, 38, 36lttrd 10198 . . . . 5  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  -u n  <  n )
40 iccssre 12255 . . . . . 6  |-  ( (
-u n  e.  RR  /\  n  e.  RR )  ->  ( -u n [,] n )  C_  RR )
4132, 31, 40syl2anc 693 . . . . 5  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( -u n [,] n ) 
C_  RR )
42 ax-resscn 9993 . . . . . . 7  |-  RR  C_  CC
43 ssid 3624 . . . . . . 7  |-  CC  C_  CC
44 cncfss 22702 . . . . . . 7  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  ( RR -cn-> RR )  C_  ( RR -cn-> CC ) )
4542, 43, 44mp2an 708 . . . . . 6  |-  ( RR
-cn-> RR )  C_  ( RR -cn-> CC )
461adantr 481 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  A  e.  dom  vol )
47 eqid 2622 . . . . . . . 8  |-  ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) )  =  ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) )
4847volcn 23374 . . . . . . 7  |-  ( ( A  e.  dom  vol  /\  -u n  e.  RR )  ->  ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) )  e.  ( RR
-cn-> RR ) )
4946, 32, 48syl2anc 693 . . . . . 6  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  (
y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) )  e.  ( RR
-cn-> RR ) )
5045, 49sseldi 3601 . . . . 5  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  (
y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) )  e.  ( RR
-cn-> CC ) )
5141sselda 3603 . . . . . 6  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  u  e.  ( -u n [,] n ) )  ->  u  e.  RR )
52 cncff 22696 . . . . . . . 8  |-  ( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) )  e.  ( RR
-cn-> RR )  ->  (
y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) : RR --> RR )
5349, 52syl 17 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  (
y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) : RR --> RR )
5453ffvelrnda 6359 . . . . . 6  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  u  e.  RR )  ->  (
( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  u )  e.  RR )
5551, 54syldan 487 . . . . 5  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  u  e.  ( -u n [,] n ) )  -> 
( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  u )  e.  RR )
56 oveq2 6658 . . . . . . . . . . . 12  |-  ( y  =  -u n  ->  ( -u n [,] y )  =  ( -u n [,] -u n ) )
5756ineq2d 3814 . . . . . . . . . . 11  |-  ( y  =  -u n  ->  ( A  i^i  ( -u n [,] y ) )  =  ( A  i^i  ( -u n [,] -u n
) ) )
5857fveq2d 6195 . . . . . . . . . 10  |-  ( y  =  -u n  ->  ( vol `  ( A  i^i  ( -u n [,] y
) ) )  =  ( vol `  ( A  i^i  ( -u n [,] -u n ) ) ) )
59 fvex 6201 . . . . . . . . . 10  |-  ( vol `  ( A  i^i  ( -u n [,] -u n
) ) )  e. 
_V
6058, 47, 59fvmpt 6282 . . . . . . . . 9  |-  ( -u n  e.  RR  ->  ( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  -u n
)  =  ( vol `  ( A  i^i  ( -u n [,] -u n
) ) ) )
6132, 60syl 17 . . . . . . . 8  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  (
( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  -u n
)  =  ( vol `  ( A  i^i  ( -u n [,] -u n
) ) ) )
62 inss2 3834 . . . . . . . . . . . 12  |-  ( A  i^i  ( -u n [,] -u n ) ) 
C_  ( -u n [,] -u n )
6332rexrd 10089 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  -u n  e.  RR* )
64 iccid 12220 . . . . . . . . . . . . 13  |-  ( -u n  e.  RR*  ->  ( -u n [,] -u n
)  =  { -u n } )
6563, 64syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( -u n [,] -u n
)  =  { -u n } )
6662, 65syl5sseq 3653 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( A  i^i  ( -u n [,] -u n ) ) 
C_  { -u n } )
6732snssd 4340 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  { -u n }  C_  RR )
6866, 67sstrd 3613 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( A  i^i  ( -u n [,] -u n ) ) 
C_  RR )
69 ovolsn 23263 . . . . . . . . . . . 12  |-  ( -u n  e.  RR  ->  ( vol* `  { -u n } )  =  0 )
7032, 69syl 17 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( vol* `  { -u n } )  =  0 )
71 ovolssnul 23255 . . . . . . . . . . 11  |-  ( ( ( A  i^i  ( -u n [,] -u n
) )  C_  { -u n }  /\  { -u n }  C_  RR  /\  ( vol* `  { -u n } )  =  0 )  ->  ( vol* `  ( A  i^i  ( -u n [,] -u n ) ) )  =  0 )
7266, 67, 70, 71syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( vol* `  ( A  i^i  ( -u n [,] -u n ) ) )  =  0 )
73 nulmbl 23303 . . . . . . . . . 10  |-  ( ( ( A  i^i  ( -u n [,] -u n
) )  C_  RR  /\  ( vol* `  ( A  i^i  ( -u n [,] -u n
) ) )  =  0 )  ->  ( A  i^i  ( -u n [,] -u n ) )  e.  dom  vol )
7468, 72, 73syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( A  i^i  ( -u n [,] -u n ) )  e.  dom  vol )
75 mblvol 23298 . . . . . . . . 9  |-  ( ( A  i^i  ( -u n [,] -u n ) )  e.  dom  vol  ->  ( vol `  ( A  i^i  ( -u n [,] -u n ) ) )  =  ( vol* `  ( A  i^i  ( -u n [,] -u n ) ) ) )
7674, 75syl 17 . . . . . . . 8  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( vol `  ( A  i^i  ( -u n [,] -u n
) ) )  =  ( vol* `  ( A  i^i  ( -u n [,] -u n
) ) ) )
7761, 76, 723eqtrd 2660 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  (
( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  -u n
)  =  0 )
7819adantr 481 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  0  <_  B )
7977, 78eqbrtrd 4675 . . . . . 6  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  (
( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  -u n
)  <_  B )
80 simprr 796 . . . . . . . 8  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) )
817adantr 481 . . . . . . . . 9  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  B  e.  RR* )
82 iccmbl 23334 . . . . . . . . . . . 12  |-  ( (
-u n  e.  RR  /\  n  e.  RR )  ->  ( -u n [,] n )  e.  dom  vol )
8332, 31, 82syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( -u n [,] n )  e.  dom  vol )
84 inmbl 23310 . . . . . . . . . . 11  |-  ( ( A  e.  dom  vol  /\  ( -u n [,] n )  e.  dom  vol )  ->  ( A  i^i  ( -u n [,] n ) )  e. 
dom  vol )
8546, 83, 84syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( A  i^i  ( -u n [,] n ) )  e. 
dom  vol )
869ffvelrni 6358 . . . . . . . . . . 11  |-  ( ( A  i^i  ( -u n [,] n ) )  e.  dom  vol  ->  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  e.  ( 0 [,] +oo ) )
878, 86sseldi 3601 . . . . . . . . . 10  |-  ( ( A  i^i  ( -u n [,] n ) )  e.  dom  vol  ->  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  e.  RR* )
8885, 87syl 17 . . . . . . . . 9  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( vol `  ( A  i^i  ( -u n [,] n
) ) )  e. 
RR* )
89 xrltle 11982 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  ( vol `  ( A  i^i  ( -u n [,] n
) ) )  e. 
RR* )  ->  ( B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  ->  B  <_  ( vol `  ( A  i^i  ( -u n [,] n
) ) ) ) )
9081, 88, 89syl2anc 693 . . . . . . . 8  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  ->  B  <_  ( vol `  ( A  i^i  ( -u n [,] n
) ) ) ) )
9180, 90mpd 15 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  B  <_  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) )
92 oveq2 6658 . . . . . . . . . . 11  |-  ( y  =  n  ->  ( -u n [,] y )  =  ( -u n [,] n ) )
9392ineq2d 3814 . . . . . . . . . 10  |-  ( y  =  n  ->  ( A  i^i  ( -u n [,] y ) )  =  ( A  i^i  ( -u n [,] n ) ) )
9493fveq2d 6195 . . . . . . . . 9  |-  ( y  =  n  ->  ( vol `  ( A  i^i  ( -u n [,] y
) ) )  =  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) )
95 fvex 6201 . . . . . . . . 9  |-  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  e.  _V
9694, 47, 95fvmpt 6282 . . . . . . . 8  |-  ( n  e.  RR  ->  (
( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  n )  =  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) )
9731, 96syl 17 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  (
( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  n )  =  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) )
9891, 97breqtrrd 4681 . . . . . 6  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  B  <_  ( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  n ) )
9979, 98jca 554 . . . . 5  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  (
( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  -u n
)  <_  B  /\  B  <_  ( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  n ) ) )
10032, 31, 33, 39, 41, 50, 55, 99ivthle 23225 . . . 4  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  E. z  e.  ( -u n [,] n ) ( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  z )  =  B )
10141sselda 3603 . . . . . . . 8  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  z  e.  ( -u n [,] n ) )  -> 
z  e.  RR )
102 oveq2 6658 . . . . . . . . . . 11  |-  ( y  =  z  ->  ( -u n [,] y )  =  ( -u n [,] z ) )
103102ineq2d 3814 . . . . . . . . . 10  |-  ( y  =  z  ->  ( A  i^i  ( -u n [,] y ) )  =  ( A  i^i  ( -u n [,] z ) ) )
104103fveq2d 6195 . . . . . . . . 9  |-  ( y  =  z  ->  ( vol `  ( A  i^i  ( -u n [,] y
) ) )  =  ( vol `  ( A  i^i  ( -u n [,] z ) ) ) )
105 fvex 6201 . . . . . . . . 9  |-  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  e.  _V
106104, 47, 105fvmpt 6282 . . . . . . . 8  |-  ( z  e.  RR  ->  (
( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  z )  =  ( vol `  ( A  i^i  ( -u n [,] z ) ) ) )
107101, 106syl 17 . . . . . . 7  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  z  e.  ( -u n [,] n ) )  -> 
( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  z )  =  ( vol `  ( A  i^i  ( -u n [,] z ) ) ) )
108107eqeq1d 2624 . . . . . 6  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  z  e.  ( -u n [,] n ) )  -> 
( ( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  z )  =  B  <-> 
( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )
10946adantr 481 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  (
z  e.  ( -u n [,] n )  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )  ->  A  e.  dom  vol )
11032adantr 481 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  (
z  e.  ( -u n [,] n )  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )  ->  -u n  e.  RR )
111101adantrr 753 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  (
z  e.  ( -u n [,] n )  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )  ->  z  e.  RR )
112 iccmbl 23334 . . . . . . . . . 10  |-  ( (
-u n  e.  RR  /\  z  e.  RR )  ->  ( -u n [,] z )  e.  dom  vol )
113110, 111, 112syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  (
z  e.  ( -u n [,] n )  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )  ->  ( -u n [,] z )  e.  dom  vol )
114 inmbl 23310 . . . . . . . . 9  |-  ( ( A  e.  dom  vol  /\  ( -u n [,] z )  e.  dom  vol )  ->  ( A  i^i  ( -u n [,] z ) )  e. 
dom  vol )
115109, 113, 114syl2anc 693 . . . . . . . 8  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  (
z  e.  ( -u n [,] n )  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )  ->  ( A  i^i  ( -u n [,] z
) )  e.  dom  vol )
116 inss1 3833 . . . . . . . . 9  |-  ( A  i^i  ( -u n [,] z ) )  C_  A
117116a1i 11 . . . . . . . 8  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  (
z  e.  ( -u n [,] n )  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )  ->  ( A  i^i  ( -u n [,] z
) )  C_  A
)
118 simprr 796 . . . . . . . 8  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  (
z  e.  ( -u n [,] n )  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )  ->  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B )
119 sseq1 3626 . . . . . . . . . 10  |-  ( x  =  ( A  i^i  ( -u n [,] z
) )  ->  (
x  C_  A  <->  ( A  i^i  ( -u n [,] z ) )  C_  A ) )
120 fveq2 6191 . . . . . . . . . . 11  |-  ( x  =  ( A  i^i  ( -u n [,] z
) )  ->  ( vol `  x )  =  ( vol `  ( A  i^i  ( -u n [,] z ) ) ) )
121120eqeq1d 2624 . . . . . . . . . 10  |-  ( x  =  ( A  i^i  ( -u n [,] z
) )  ->  (
( vol `  x
)  =  B  <->  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )
122119, 121anbi12d 747 . . . . . . . . 9  |-  ( x  =  ( A  i^i  ( -u n [,] z
) )  ->  (
( x  C_  A  /\  ( vol `  x
)  =  B )  <-> 
( ( A  i^i  ( -u n [,] z
) )  C_  A  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) ) )
123122rspcev 3309 . . . . . . . 8  |-  ( ( ( A  i^i  ( -u n [,] z ) )  e.  dom  vol  /\  ( ( A  i^i  ( -u n [,] z
) )  C_  A  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )  ->  E. x  e.  dom  vol ( x  C_  A  /\  ( vol `  x
)  =  B ) )
124115, 117, 118, 123syl12anc 1324 . . . . . . 7  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  (
z  e.  ( -u n [,] n )  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )  ->  E. x  e.  dom  vol ( x  C_  A  /\  ( vol `  x
)  =  B ) )
125124expr 643 . . . . . 6  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  z  e.  ( -u n [,] n ) )  -> 
( ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B  ->  E. x  e.  dom  vol ( x 
C_  A  /\  ( vol `  x )  =  B ) ) )
126108, 125sylbid 230 . . . . 5  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  z  e.  ( -u n [,] n ) )  -> 
( ( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  z )  =  B  ->  E. x  e.  dom  vol ( x  C_  A  /\  ( vol `  x
)  =  B ) ) )
127126rexlimdva 3031 . . . 4  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( E. z  e.  ( -u n [,] n ) ( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  z )  =  B  ->  E. x  e.  dom  vol ( x 
C_  A  /\  ( vol `  x )  =  B ) ) )
128100, 127mpd 15 . . 3  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  E. x  e.  dom  vol ( x 
C_  A  /\  ( vol `  x )  =  B ) )
12929, 128rexlimddv 3035 . 2  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  ->  E. x  e.  dom  vol ( x  C_  A  /\  ( vol `  x
)  =  B ) )
130 simpll 790 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  =  ( vol `  A ) )  ->  A  e.  dom  vol )
131 ssid 3624 . . . 4  |-  A  C_  A
132131a1i 11 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  =  ( vol `  A ) )  ->  A  C_  A
)
133 simpr 477 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  =  ( vol `  A ) )  ->  B  =  ( vol `  A ) )
134133eqcomd 2628 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  =  ( vol `  A ) )  ->  ( vol `  A )  =  B )
135 sseq1 3626 . . . . 5  |-  ( x  =  A  ->  (
x  C_  A  <->  A  C_  A
) )
136 fveq2 6191 . . . . . 6  |-  ( x  =  A  ->  ( vol `  x )  =  ( vol `  A
) )
137136eqeq1d 2624 . . . . 5  |-  ( x  =  A  ->  (
( vol `  x
)  =  B  <->  ( vol `  A )  =  B ) )
138135, 137anbi12d 747 . . . 4  |-  ( x  =  A  ->  (
( x  C_  A  /\  ( vol `  x
)  =  B )  <-> 
( A  C_  A  /\  ( vol `  A
)  =  B ) ) )
139138rspcev 3309 . . 3  |-  ( ( A  e.  dom  vol  /\  ( A  C_  A  /\  ( vol `  A
)  =  B ) )  ->  E. x  e.  dom  vol ( x 
C_  A  /\  ( vol `  x )  =  B ) )
140130, 132, 134, 139syl12anc 1324 . 2  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  =  ( vol `  A ) )  ->  E. x  e.  dom  vol ( x 
C_  A  /\  ( vol `  x )  =  B ) )
14117simp3d 1075 . . 3  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  ->  B  <_  ( vol `  A
) )
142 xrleloe 11977 . . . 4  |-  ( ( B  e.  RR*  /\  ( vol `  A )  e. 
RR* )  ->  ( B  <_  ( vol `  A
)  <->  ( B  < 
( vol `  A
)  \/  B  =  ( vol `  A
) ) ) )
1436, 12, 142syl2anc 693 . . 3  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  -> 
( B  <_  ( vol `  A )  <->  ( B  <  ( vol `  A
)  \/  B  =  ( vol `  A
) ) ) )
144141, 143mpbid 222 . 2  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  -> 
( B  <  ( vol `  A )  \/  B  =  ( vol `  A ) ) )
145129, 140, 144mpjaodan 827 1  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  ->  E. x  e.  dom  vol ( x  C_  A  /\  ( vol `  x
)  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913    i^i cin 3573    C_ wss 3574   {csn 4177   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075   -ucneg 10267   NNcn 11020   [,]cicc 12178   -cn->ccncf 22679   vol*covol 23231   volcvol 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-cncf 22681  df-ovol 23233  df-vol 23234
This theorem is referenced by:  itg2const2  23508
  Copyright terms: Public domain W3C validator