| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > volivth | Structured version Visualization version Unicode version | ||
| Description: The Intermediate Value
Theorem for the Lebesgue volume function. For
any positive |
| Ref | Expression |
|---|---|
| volivth |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 790 |
. . . 4
| |
| 2 | mnfxr 10096 |
. . . . . 6
| |
| 3 | 2 | a1i 11 |
. . . . 5
|
| 4 | iccssxr 12256 |
. . . . . . 7
| |
| 5 | simpr 477 |
. . . . . . 7
| |
| 6 | 4, 5 | sseldi 3601 |
. . . . . 6
|
| 7 | 6 | adantr 481 |
. . . . 5
|
| 8 | iccssxr 12256 |
. . . . . . . 8
| |
| 9 | volf 23297 |
. . . . . . . . 9
| |
| 10 | 9 | ffvelrni 6358 |
. . . . . . . 8
|
| 11 | 8, 10 | sseldi 3601 |
. . . . . . 7
|
| 12 | 11 | adantr 481 |
. . . . . 6
|
| 13 | 12 | adantr 481 |
. . . . 5
|
| 14 | 0xr 10086 |
. . . . . . . . . 10
| |
| 15 | elicc1 12219 |
. . . . . . . . . 10
| |
| 16 | 14, 12, 15 | sylancr 695 |
. . . . . . . . 9
|
| 17 | 5, 16 | mpbid 222 |
. . . . . . . 8
|
| 18 | 17 | simp2d 1074 |
. . . . . . 7
|
| 19 | 18 | adantr 481 |
. . . . . 6
|
| 20 | mnflt0 11959 |
. . . . . . . 8
| |
| 21 | xrltletr 11988 |
. . . . . . . 8
| |
| 22 | 20, 21 | mpani 712 |
. . . . . . 7
|
| 23 | 2, 14, 22 | mp3an12 1414 |
. . . . . 6
|
| 24 | 7, 19, 23 | sylc 65 |
. . . . 5
|
| 25 | simpr 477 |
. . . . 5
| |
| 26 | xrre2 12001 |
. . . . 5
| |
| 27 | 3, 7, 13, 24, 25, 26 | syl32anc 1334 |
. . . 4
|
| 28 | volsup2 23373 |
. . . 4
| |
| 29 | 1, 27, 25, 28 | syl3anc 1326 |
. . 3
|
| 30 | nnre 11027 |
. . . . . . 7
| |
| 31 | 30 | ad2antrl 764 |
. . . . . 6
|
| 32 | 31 | renegcld 10457 |
. . . . 5
|
| 33 | 27 | adantr 481 |
. . . . 5
|
| 34 | 0red 10041 |
. . . . . 6
| |
| 35 | nngt0 11049 |
. . . . . . . 8
| |
| 36 | 35 | ad2antrl 764 |
. . . . . . 7
|
| 37 | 31 | lt0neg2d 10598 |
. . . . . . 7
|
| 38 | 36, 37 | mpbid 222 |
. . . . . 6
|
| 39 | 32, 34, 31, 38, 36 | lttrd 10198 |
. . . . 5
|
| 40 | iccssre 12255 |
. . . . . 6
| |
| 41 | 32, 31, 40 | syl2anc 693 |
. . . . 5
|
| 42 | ax-resscn 9993 |
. . . . . . 7
| |
| 43 | ssid 3624 |
. . . . . . 7
| |
| 44 | cncfss 22702 |
. . . . . . 7
| |
| 45 | 42, 43, 44 | mp2an 708 |
. . . . . 6
|
| 46 | 1 | adantr 481 |
. . . . . . 7
|
| 47 | eqid 2622 |
. . . . . . . 8
| |
| 48 | 47 | volcn 23374 |
. . . . . . 7
|
| 49 | 46, 32, 48 | syl2anc 693 |
. . . . . 6
|
| 50 | 45, 49 | sseldi 3601 |
. . . . 5
|
| 51 | 41 | sselda 3603 |
. . . . . 6
|
| 52 | cncff 22696 |
. . . . . . . 8
| |
| 53 | 49, 52 | syl 17 |
. . . . . . 7
|
| 54 | 53 | ffvelrnda 6359 |
. . . . . 6
|
| 55 | 51, 54 | syldan 487 |
. . . . 5
|
| 56 | oveq2 6658 |
. . . . . . . . . . . 12
| |
| 57 | 56 | ineq2d 3814 |
. . . . . . . . . . 11
|
| 58 | 57 | fveq2d 6195 |
. . . . . . . . . 10
|
| 59 | fvex 6201 |
. . . . . . . . . 10
| |
| 60 | 58, 47, 59 | fvmpt 6282 |
. . . . . . . . 9
|
| 61 | 32, 60 | syl 17 |
. . . . . . . 8
|
| 62 | inss2 3834 |
. . . . . . . . . . . 12
| |
| 63 | 32 | rexrd 10089 |
. . . . . . . . . . . . 13
|
| 64 | iccid 12220 |
. . . . . . . . . . . . 13
| |
| 65 | 63, 64 | syl 17 |
. . . . . . . . . . . 12
|
| 66 | 62, 65 | syl5sseq 3653 |
. . . . . . . . . . 11
|
| 67 | 32 | snssd 4340 |
. . . . . . . . . . 11
|
| 68 | 66, 67 | sstrd 3613 |
. . . . . . . . . 10
|
| 69 | ovolsn 23263 |
. . . . . . . . . . . 12
| |
| 70 | 32, 69 | syl 17 |
. . . . . . . . . . 11
|
| 71 | ovolssnul 23255 |
. . . . . . . . . . 11
| |
| 72 | 66, 67, 70, 71 | syl3anc 1326 |
. . . . . . . . . 10
|
| 73 | nulmbl 23303 |
. . . . . . . . . 10
| |
| 74 | 68, 72, 73 | syl2anc 693 |
. . . . . . . . 9
|
| 75 | mblvol 23298 |
. . . . . . . . 9
| |
| 76 | 74, 75 | syl 17 |
. . . . . . . 8
|
| 77 | 61, 76, 72 | 3eqtrd 2660 |
. . . . . . 7
|
| 78 | 19 | adantr 481 |
. . . . . . 7
|
| 79 | 77, 78 | eqbrtrd 4675 |
. . . . . 6
|
| 80 | simprr 796 |
. . . . . . . 8
| |
| 81 | 7 | adantr 481 |
. . . . . . . . 9
|
| 82 | iccmbl 23334 |
. . . . . . . . . . . 12
| |
| 83 | 32, 31, 82 | syl2anc 693 |
. . . . . . . . . . 11
|
| 84 | inmbl 23310 |
. . . . . . . . . . 11
| |
| 85 | 46, 83, 84 | syl2anc 693 |
. . . . . . . . . 10
|
| 86 | 9 | ffvelrni 6358 |
. . . . . . . . . . 11
|
| 87 | 8, 86 | sseldi 3601 |
. . . . . . . . . 10
|
| 88 | 85, 87 | syl 17 |
. . . . . . . . 9
|
| 89 | xrltle 11982 |
. . . . . . . . 9
| |
| 90 | 81, 88, 89 | syl2anc 693 |
. . . . . . . 8
|
| 91 | 80, 90 | mpd 15 |
. . . . . . 7
|
| 92 | oveq2 6658 |
. . . . . . . . . . 11
| |
| 93 | 92 | ineq2d 3814 |
. . . . . . . . . 10
|
| 94 | 93 | fveq2d 6195 |
. . . . . . . . 9
|
| 95 | fvex 6201 |
. . . . . . . . 9
| |
| 96 | 94, 47, 95 | fvmpt 6282 |
. . . . . . . 8
|
| 97 | 31, 96 | syl 17 |
. . . . . . 7
|
| 98 | 91, 97 | breqtrrd 4681 |
. . . . . 6
|
| 99 | 79, 98 | jca 554 |
. . . . 5
|
| 100 | 32, 31, 33, 39, 41, 50, 55, 99 | ivthle 23225 |
. . . 4
|
| 101 | 41 | sselda 3603 |
. . . . . . . 8
|
| 102 | oveq2 6658 |
. . . . . . . . . . 11
| |
| 103 | 102 | ineq2d 3814 |
. . . . . . . . . 10
|
| 104 | 103 | fveq2d 6195 |
. . . . . . . . 9
|
| 105 | fvex 6201 |
. . . . . . . . 9
| |
| 106 | 104, 47, 105 | fvmpt 6282 |
. . . . . . . 8
|
| 107 | 101, 106 | syl 17 |
. . . . . . 7
|
| 108 | 107 | eqeq1d 2624 |
. . . . . 6
|
| 109 | 46 | adantr 481 |
. . . . . . . . 9
|
| 110 | 32 | adantr 481 |
. . . . . . . . . 10
|
| 111 | 101 | adantrr 753 |
. . . . . . . . . 10
|
| 112 | iccmbl 23334 |
. . . . . . . . . 10
| |
| 113 | 110, 111, 112 | syl2anc 693 |
. . . . . . . . 9
|
| 114 | inmbl 23310 |
. . . . . . . . 9
| |
| 115 | 109, 113, 114 | syl2anc 693 |
. . . . . . . 8
|
| 116 | inss1 3833 |
. . . . . . . . 9
| |
| 117 | 116 | a1i 11 |
. . . . . . . 8
|
| 118 | simprr 796 |
. . . . . . . 8
| |
| 119 | sseq1 3626 |
. . . . . . . . . 10
| |
| 120 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 121 | 120 | eqeq1d 2624 |
. . . . . . . . . 10
|
| 122 | 119, 121 | anbi12d 747 |
. . . . . . . . 9
|
| 123 | 122 | rspcev 3309 |
. . . . . . . 8
|
| 124 | 115, 117, 118, 123 | syl12anc 1324 |
. . . . . . 7
|
| 125 | 124 | expr 643 |
. . . . . 6
|
| 126 | 108, 125 | sylbid 230 |
. . . . 5
|
| 127 | 126 | rexlimdva 3031 |
. . . 4
|
| 128 | 100, 127 | mpd 15 |
. . 3
|
| 129 | 29, 128 | rexlimddv 3035 |
. 2
|
| 130 | simpll 790 |
. . 3
| |
| 131 | ssid 3624 |
. . . 4
| |
| 132 | 131 | a1i 11 |
. . 3
|
| 133 | simpr 477 |
. . . 4
| |
| 134 | 133 | eqcomd 2628 |
. . 3
|
| 135 | sseq1 3626 |
. . . . 5
| |
| 136 | fveq2 6191 |
. . . . . 6
| |
| 137 | 136 | eqeq1d 2624 |
. . . . 5
|
| 138 | 135, 137 | anbi12d 747 |
. . . 4
|
| 139 | 138 | rspcev 3309 |
. . 3
|
| 140 | 130, 132, 134, 139 | syl12anc 1324 |
. 2
|
| 141 | 17 | simp3d 1075 |
. . 3
|
| 142 | xrleloe 11977 |
. . . 4
| |
| 143 | 6, 12, 142 | syl2anc 693 |
. . 3
|
| 144 | 141, 143 | mpbid 222 |
. 2
|
| 145 | 129, 140, 144 | mpjaodan 827 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cc 9257 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-disj 4621 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fi 8317 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ioo 12179 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-rlim 14220 df-sum 14417 df-rest 16083 df-topgen 16104 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-top 20699 df-topon 20716 df-bases 20750 df-cmp 21190 df-cncf 22681 df-ovol 23233 df-vol 23234 |
| This theorem is referenced by: itg2const2 23508 |
| Copyright terms: Public domain | W3C validator |