MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lawcoslem1 Structured version   Visualization version   Unicode version

Theorem lawcoslem1 24545
Description: Lemma for lawcos 24546. Here we prove the law for a point at the origin and two distinct points U and V, using an expanded version of the signed angle expression on the complex plane. (Contributed by David A. Wheeler, 11-Jun-2015.)
Hypotheses
Ref Expression
lawcoslem1.1  |-  ( ph  ->  U  e.  CC )
lawcoslem1.2  |-  ( ph  ->  V  e.  CC )
lawcoslem1.3  |-  ( ph  ->  U  =/=  0 )
lawcoslem1.4  |-  ( ph  ->  V  =/=  0 )
Assertion
Ref Expression
lawcoslem1  |-  ( ph  ->  ( ( abs `  ( U  -  V )
) ^ 2 )  =  ( ( ( ( abs `  U
) ^ 2 )  +  ( ( abs `  V ) ^ 2 ) )  -  (
2  x.  ( ( ( abs `  U
)  x.  ( abs `  V ) )  x.  ( ( Re `  ( U  /  V
) )  /  ( abs `  ( U  /  V ) ) ) ) ) ) )

Proof of Theorem lawcoslem1
StepHypRef Expression
1 lawcoslem1.1 . . 3  |-  ( ph  ->  U  e.  CC )
2 lawcoslem1.2 . . 3  |-  ( ph  ->  V  e.  CC )
3 sqabssub 14023 . . 3  |-  ( ( U  e.  CC  /\  V  e.  CC )  ->  ( ( abs `  ( U  -  V )
) ^ 2 )  =  ( ( ( ( abs `  U
) ^ 2 )  +  ( ( abs `  V ) ^ 2 ) )  -  (
2  x.  ( Re
`  ( U  x.  ( * `  V
) ) ) ) ) )
41, 2, 3syl2anc 693 . 2  |-  ( ph  ->  ( ( abs `  ( U  -  V )
) ^ 2 )  =  ( ( ( ( abs `  U
) ^ 2 )  +  ( ( abs `  V ) ^ 2 ) )  -  (
2  x.  ( Re
`  ( U  x.  ( * `  V
) ) ) ) ) )
5 lawcoslem1.4 . . . . . . . . 9  |-  ( ph  ->  V  =/=  0 )
61, 2, 5absdivd 14194 . . . . . . . 8  |-  ( ph  ->  ( abs `  ( U  /  V ) )  =  ( ( abs `  U )  /  ( abs `  V ) ) )
76oveq2d 6666 . . . . . . 7  |-  ( ph  ->  ( ( Re `  ( U  /  V
) )  /  ( abs `  ( U  /  V ) ) )  =  ( ( Re
`  ( U  /  V ) )  / 
( ( abs `  U
)  /  ( abs `  V ) ) ) )
87oveq2d 6666 . . . . . 6  |-  ( ph  ->  ( ( ( abs `  U )  x.  ( abs `  V ) )  x.  ( ( Re
`  ( U  /  V ) )  / 
( abs `  ( U  /  V ) ) ) )  =  ( ( ( abs `  U
)  x.  ( abs `  V ) )  x.  ( ( Re `  ( U  /  V
) )  /  (
( abs `  U
)  /  ( abs `  V ) ) ) ) )
91abscld 14175 . . . . . . . . 9  |-  ( ph  ->  ( abs `  U
)  e.  RR )
102abscld 14175 . . . . . . . . 9  |-  ( ph  ->  ( abs `  V
)  e.  RR )
119, 10remulcld 10070 . . . . . . . 8  |-  ( ph  ->  ( ( abs `  U
)  x.  ( abs `  V ) )  e.  RR )
1211recnd 10068 . . . . . . 7  |-  ( ph  ->  ( ( abs `  U
)  x.  ( abs `  V ) )  e.  CC )
131, 2, 5divcld 10801 . . . . . . . . 9  |-  ( ph  ->  ( U  /  V
)  e.  CC )
1413recld 13934 . . . . . . . 8  |-  ( ph  ->  ( Re `  ( U  /  V ) )  e.  RR )
1514recnd 10068 . . . . . . 7  |-  ( ph  ->  ( Re `  ( U  /  V ) )  e.  CC )
169recnd 10068 . . . . . . . 8  |-  ( ph  ->  ( abs `  U
)  e.  CC )
1710recnd 10068 . . . . . . . 8  |-  ( ph  ->  ( abs `  V
)  e.  CC )
182, 5absne0d 14186 . . . . . . . 8  |-  ( ph  ->  ( abs `  V
)  =/=  0 )
1916, 17, 18divcld 10801 . . . . . . 7  |-  ( ph  ->  ( ( abs `  U
)  /  ( abs `  V ) )  e.  CC )
20 lawcoslem1.3 . . . . . . . . 9  |-  ( ph  ->  U  =/=  0 )
211, 20absne0d 14186 . . . . . . . 8  |-  ( ph  ->  ( abs `  U
)  =/=  0 )
2216, 17, 21, 18divne0d 10817 . . . . . . 7  |-  ( ph  ->  ( ( abs `  U
)  /  ( abs `  V ) )  =/=  0 )
2312, 15, 19, 22div12d 10837 . . . . . 6  |-  ( ph  ->  ( ( ( abs `  U )  x.  ( abs `  V ) )  x.  ( ( Re
`  ( U  /  V ) )  / 
( ( abs `  U
)  /  ( abs `  V ) ) ) )  =  ( ( Re `  ( U  /  V ) )  x.  ( ( ( abs `  U )  x.  ( abs `  V
) )  /  (
( abs `  U
)  /  ( abs `  V ) ) ) ) )
248, 23eqtrd 2656 . . . . 5  |-  ( ph  ->  ( ( ( abs `  U )  x.  ( abs `  V ) )  x.  ( ( Re
`  ( U  /  V ) )  / 
( abs `  ( U  /  V ) ) ) )  =  ( ( Re `  ( U  /  V ) )  x.  ( ( ( abs `  U )  x.  ( abs `  V
) )  /  (
( abs `  U
)  /  ( abs `  V ) ) ) ) )
2512, 16, 17, 21, 18divdiv2d 10833 . . . . . . 7  |-  ( ph  ->  ( ( ( abs `  U )  x.  ( abs `  V ) )  /  ( ( abs `  U )  /  ( abs `  V ) ) )  =  ( ( ( ( abs `  U
)  x.  ( abs `  V ) )  x.  ( abs `  V
) )  /  ( abs `  U ) ) )
2617sqvald 13005 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs `  V
) ^ 2 )  =  ( ( abs `  V )  x.  ( abs `  V ) ) )
2726oveq1d 6665 . . . . . . . . 9  |-  ( ph  ->  ( ( ( abs `  V ) ^ 2 )  x.  ( abs `  U ) )  =  ( ( ( abs `  V )  x.  ( abs `  V ) )  x.  ( abs `  U
) ) )
2816, 17, 17mul31d 10247 . . . . . . . . 9  |-  ( ph  ->  ( ( ( abs `  U )  x.  ( abs `  V ) )  x.  ( abs `  V
) )  =  ( ( ( abs `  V
)  x.  ( abs `  V ) )  x.  ( abs `  U
) ) )
2927, 28eqtr4d 2659 . . . . . . . 8  |-  ( ph  ->  ( ( ( abs `  V ) ^ 2 )  x.  ( abs `  U ) )  =  ( ( ( abs `  U )  x.  ( abs `  V ) )  x.  ( abs `  V
) ) )
3029oveq1d 6665 . . . . . . 7  |-  ( ph  ->  ( ( ( ( abs `  V ) ^ 2 )  x.  ( abs `  U
) )  /  ( abs `  U ) )  =  ( ( ( ( abs `  U
)  x.  ( abs `  V ) )  x.  ( abs `  V
) )  /  ( abs `  U ) ) )
3117sqcld 13006 . . . . . . . 8  |-  ( ph  ->  ( ( abs `  V
) ^ 2 )  e.  CC )
3231, 16, 21divcan4d 10807 . . . . . . 7  |-  ( ph  ->  ( ( ( ( abs `  V ) ^ 2 )  x.  ( abs `  U
) )  /  ( abs `  U ) )  =  ( ( abs `  V ) ^ 2 ) )
3325, 30, 323eqtr2rd 2663 . . . . . 6  |-  ( ph  ->  ( ( abs `  V
) ^ 2 )  =  ( ( ( abs `  U )  x.  ( abs `  V
) )  /  (
( abs `  U
)  /  ( abs `  V ) ) ) )
3433oveq2d 6666 . . . . 5  |-  ( ph  ->  ( ( Re `  ( U  /  V
) )  x.  (
( abs `  V
) ^ 2 ) )  =  ( ( Re `  ( U  /  V ) )  x.  ( ( ( abs `  U )  x.  ( abs `  V
) )  /  (
( abs `  U
)  /  ( abs `  V ) ) ) ) )
3515, 31mulcomd 10061 . . . . . . 7  |-  ( ph  ->  ( ( Re `  ( U  /  V
) )  x.  (
( abs `  V
) ^ 2 ) )  =  ( ( ( abs `  V
) ^ 2 )  x.  ( Re `  ( U  /  V
) ) ) )
3610resqcld 13035 . . . . . . . 8  |-  ( ph  ->  ( ( abs `  V
) ^ 2 )  e.  RR )
3736, 13remul2d 13967 . . . . . . 7  |-  ( ph  ->  ( Re `  (
( ( abs `  V
) ^ 2 )  x.  ( U  /  V ) ) )  =  ( ( ( abs `  V ) ^ 2 )  x.  ( Re `  ( U  /  V ) ) ) )
3835, 37eqtr4d 2659 . . . . . 6  |-  ( ph  ->  ( ( Re `  ( U  /  V
) )  x.  (
( abs `  V
) ^ 2 ) )  =  ( Re
`  ( ( ( abs `  V ) ^ 2 )  x.  ( U  /  V
) ) ) )
391, 31, 2, 5div12d 10837 . . . . . . . 8  |-  ( ph  ->  ( U  x.  (
( ( abs `  V
) ^ 2 )  /  V ) )  =  ( ( ( abs `  V ) ^ 2 )  x.  ( U  /  V
) ) )
4031, 2, 5divrecd 10804 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( abs `  V ) ^ 2 )  /  V )  =  ( ( ( abs `  V ) ^ 2 )  x.  ( 1  /  V
) ) )
41 recval 14062 . . . . . . . . . . . . 13  |-  ( ( V  e.  CC  /\  V  =/=  0 )  -> 
( 1  /  V
)  =  ( ( * `  V )  /  ( ( abs `  V ) ^ 2 ) ) )
422, 5, 41syl2anc 693 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  /  V
)  =  ( ( * `  V )  /  ( ( abs `  V ) ^ 2 ) ) )
4342oveq2d 6666 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( abs `  V ) ^ 2 )  x.  ( 1  /  V ) )  =  ( ( ( abs `  V ) ^ 2 )  x.  ( ( * `  V )  /  (
( abs `  V
) ^ 2 ) ) ) )
442cjcld 13936 . . . . . . . . . . . 12  |-  ( ph  ->  ( * `  V
)  e.  CC )
45 sqne0 12930 . . . . . . . . . . . . . 14  |-  ( ( abs `  V )  e.  CC  ->  (
( ( abs `  V
) ^ 2 )  =/=  0  <->  ( abs `  V )  =/=  0
) )
4617, 45syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( abs `  V ) ^ 2 )  =/=  0  <->  ( abs `  V )  =/=  0 ) )
4718, 46mpbird 247 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( abs `  V
) ^ 2 )  =/=  0 )
4844, 31, 47divcan2d 10803 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( abs `  V ) ^ 2 )  x.  ( ( * `  V )  /  ( ( abs `  V ) ^ 2 ) ) )  =  ( * `  V
) )
4943, 48eqtrd 2656 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( abs `  V ) ^ 2 )  x.  ( 1  /  V ) )  =  ( * `  V ) )
5040, 49eqtrd 2656 . . . . . . . . 9  |-  ( ph  ->  ( ( ( abs `  V ) ^ 2 )  /  V )  =  ( * `  V ) )
5150oveq2d 6666 . . . . . . . 8  |-  ( ph  ->  ( U  x.  (
( ( abs `  V
) ^ 2 )  /  V ) )  =  ( U  x.  ( * `  V
) ) )
5239, 51eqtr3d 2658 . . . . . . 7  |-  ( ph  ->  ( ( ( abs `  V ) ^ 2 )  x.  ( U  /  V ) )  =  ( U  x.  ( * `  V
) ) )
5352fveq2d 6195 . . . . . 6  |-  ( ph  ->  ( Re `  (
( ( abs `  V
) ^ 2 )  x.  ( U  /  V ) ) )  =  ( Re `  ( U  x.  (
* `  V )
) ) )
5438, 53eqtrd 2656 . . . . 5  |-  ( ph  ->  ( ( Re `  ( U  /  V
) )  x.  (
( abs `  V
) ^ 2 ) )  =  ( Re
`  ( U  x.  ( * `  V
) ) ) )
5524, 34, 543eqtr2rd 2663 . . . 4  |-  ( ph  ->  ( Re `  ( U  x.  ( * `  V ) ) )  =  ( ( ( abs `  U )  x.  ( abs `  V
) )  x.  (
( Re `  ( U  /  V ) )  /  ( abs `  ( U  /  V ) ) ) ) )
5655oveq2d 6666 . . 3  |-  ( ph  ->  ( 2  x.  (
Re `  ( U  x.  ( * `  V
) ) ) )  =  ( 2  x.  ( ( ( abs `  U )  x.  ( abs `  V ) )  x.  ( ( Re
`  ( U  /  V ) )  / 
( abs `  ( U  /  V ) ) ) ) ) )
5756oveq2d 6666 . 2  |-  ( ph  ->  ( ( ( ( abs `  U ) ^ 2 )  +  ( ( abs `  V
) ^ 2 ) )  -  ( 2  x.  ( Re `  ( U  x.  (
* `  V )
) ) ) )  =  ( ( ( ( abs `  U
) ^ 2 )  +  ( ( abs `  V ) ^ 2 ) )  -  (
2  x.  ( ( ( abs `  U
)  x.  ( abs `  V ) )  x.  ( ( Re `  ( U  /  V
) )  /  ( abs `  ( U  /  V ) ) ) ) ) ) )
584, 57eqtrd 2656 1  |-  ( ph  ->  ( ( abs `  ( U  -  V )
) ^ 2 )  =  ( ( ( ( abs `  U
) ^ 2 )  +  ( ( abs `  V ) ^ 2 ) )  -  (
2  x.  ( ( ( abs `  U
)  x.  ( abs `  V ) )  x.  ( ( Re `  ( U  /  V
) )  /  ( abs `  ( U  /  V ) ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990    =/= wne 2794   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266    / cdiv 10684   2c2 11070   ^cexp 12860   *ccj 13836   Recre 13837   abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  lawcos  24546
  Copyright terms: Public domain W3C validator