| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfl7N | Structured version Visualization version Unicode version | ||
| Description: Property of a functional
with a closed kernel. Every nonzero functional
is determined by a unique nonzero vector. Note that |
| Ref | Expression |
|---|---|
| lcfl6.h |
|
| lcfl6.o |
|
| lcfl6.u |
|
| lcfl6.v |
|
| lcfl6.a |
|
| lcfl6.t |
|
| lcfl6.s |
|
| lcfl6.r |
|
| lcfl6.z |
|
| lcfl6.f |
|
| lcfl6.l |
|
| lcfl6.c |
|
| lcfl6.k |
|
| lcfl6.g |
|
| Ref | Expression |
|---|---|
| lcfl7N |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcfl6.h |
. . 3
| |
| 2 | lcfl6.o |
. . 3
| |
| 3 | lcfl6.u |
. . 3
| |
| 4 | lcfl6.v |
. . 3
| |
| 5 | lcfl6.a |
. . 3
| |
| 6 | lcfl6.t |
. . 3
| |
| 7 | lcfl6.s |
. . 3
| |
| 8 | lcfl6.r |
. . 3
| |
| 9 | lcfl6.z |
. . 3
| |
| 10 | lcfl6.f |
. . 3
| |
| 11 | lcfl6.l |
. . 3
| |
| 12 | lcfl6.c |
. . 3
| |
| 13 | lcfl6.k |
. . 3
| |
| 14 | lcfl6.g |
. . 3
| |
| 15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | lcfl6 36789 |
. 2
|
| 16 | 13 | ad2antrr 762 |
. . . . . . . . . 10
|
| 17 | eqid 2622 |
. . . . . . . . . 10
| |
| 18 | eqid 2622 |
. . . . . . . . . 10
| |
| 19 | simplrl 800 |
. . . . . . . . . 10
| |
| 20 | simplrr 801 |
. . . . . . . . . 10
| |
| 21 | simprl 794 |
. . . . . . . . . . . 12
| |
| 22 | eqeq1 2626 |
. . . . . . . . . . . . . . . 16
| |
| 23 | 22 | rexbidv 3052 |
. . . . . . . . . . . . . . 15
|
| 24 | 23 | riotabidv 6613 |
. . . . . . . . . . . . . 14
|
| 25 | oveq1 6657 |
. . . . . . . . . . . . . . . . . . 19
| |
| 26 | 25 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . 18
|
| 27 | 26 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . 17
|
| 28 | 27 | rexbidv 3052 |
. . . . . . . . . . . . . . . 16
|
| 29 | oveq1 6657 |
. . . . . . . . . . . . . . . . . 18
| |
| 30 | 29 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . 17
|
| 31 | 30 | cbvrexv 3172 |
. . . . . . . . . . . . . . . 16
|
| 32 | 28, 31 | syl6bb 276 |
. . . . . . . . . . . . . . 15
|
| 33 | 32 | cbvriotav 6622 |
. . . . . . . . . . . . . 14
|
| 34 | 24, 33 | syl6eq 2672 |
. . . . . . . . . . . . 13
|
| 35 | 34 | cbvmptv 4750 |
. . . . . . . . . . . 12
|
| 36 | 21, 35 | syl6eq 2672 |
. . . . . . . . . . 11
|
| 37 | simprr 796 |
. . . . . . . . . . . 12
| |
| 38 | eqeq1 2626 |
. . . . . . . . . . . . . . . 16
| |
| 39 | 38 | rexbidv 3052 |
. . . . . . . . . . . . . . 15
|
| 40 | 39 | riotabidv 6613 |
. . . . . . . . . . . . . 14
|
| 41 | oveq1 6657 |
. . . . . . . . . . . . . . . . . . 19
| |
| 42 | 41 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . 18
|
| 43 | 42 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . 17
|
| 44 | 43 | rexbidv 3052 |
. . . . . . . . . . . . . . . 16
|
| 45 | oveq1 6657 |
. . . . . . . . . . . . . . . . . 18
| |
| 46 | 45 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . 17
|
| 47 | 46 | cbvrexv 3172 |
. . . . . . . . . . . . . . . 16
|
| 48 | 44, 47 | syl6bb 276 |
. . . . . . . . . . . . . . 15
|
| 49 | 48 | cbvriotav 6622 |
. . . . . . . . . . . . . 14
|
| 50 | 40, 49 | syl6eq 2672 |
. . . . . . . . . . . . 13
|
| 51 | 50 | cbvmptv 4750 |
. . . . . . . . . . . 12
|
| 52 | 37, 51 | syl6eq 2672 |
. . . . . . . . . . 11
|
| 53 | 36, 52 | eqtr3d 2658 |
. . . . . . . . . 10
|
| 54 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 17, 18, 19, 20, 53 | lcfl7lem 36788 |
. . . . . . . . 9
|
| 55 | 54 | ex 450 |
. . . . . . . 8
|
| 56 | 55 | ralrimivva 2971 |
. . . . . . 7
|
| 57 | 56 | a1d 25 |
. . . . . 6
|
| 58 | 57 | ancld 576 |
. . . . 5
|
| 59 | sneq 4187 |
. . . . . . . . . . 11
| |
| 60 | 59 | fveq2d 6195 |
. . . . . . . . . 10
|
| 61 | oveq2 6658 |
. . . . . . . . . . . 12
| |
| 62 | 61 | oveq2d 6666 |
. . . . . . . . . . 11
|
| 63 | 62 | eqeq2d 2632 |
. . . . . . . . . 10
|
| 64 | 60, 63 | rexeqbidv 3153 |
. . . . . . . . 9
|
| 65 | 64 | riotabidv 6613 |
. . . . . . . 8
|
| 66 | 65 | mpteq2dv 4745 |
. . . . . . 7
|
| 67 | 66 | eqeq2d 2632 |
. . . . . 6
|
| 68 | 67 | reu4 3400 |
. . . . 5
|
| 69 | 58, 68 | syl6ibr 242 |
. . . 4
|
| 70 | reurex 3160 |
. . . 4
| |
| 71 | 69, 70 | impbid1 215 |
. . 3
|
| 72 | 71 | orbi2d 738 |
. 2
|
| 73 | 15, 72 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-riotaBAD 34239 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-undef 7399 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-0g 16102 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-grp 17425 df-minusg 17426 df-sbg 17427 df-subg 17591 df-cntz 17750 df-lsm 18051 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-dvr 18683 df-drng 18749 df-lmod 18865 df-lss 18933 df-lsp 18972 df-lvec 19103 df-lsatoms 34263 df-lshyp 34264 df-lfl 34345 df-lkr 34373 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 df-lvols 34786 df-lines 34787 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-lhyp 35274 df-laut 35275 df-ldil 35390 df-ltrn 35391 df-trl 35446 df-tgrp 36031 df-tendo 36043 df-edring 36045 df-dveca 36291 df-disoa 36318 df-dvech 36368 df-dib 36428 df-dic 36462 df-dih 36518 df-doch 36637 df-djh 36684 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |