MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpbl Structured version   Visualization version   Unicode version

Theorem lpbl 22308
Description: Every ball around a limit point  P of a subset  S includes a member of  S (even if  P  e/  S). (Contributed by NM, 9-Nov-2007.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypothesis
Ref Expression
mopni.1  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
lpbl  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  P  e.  (
( limPt `  J ) `  S ) )  /\  R  e.  RR+ )  ->  E. x  e.  S  x  e.  ( P
( ball `  D ) R ) )
Distinct variable groups:    x, D    x, J    x, R    x, S    x, P    x, X

Proof of Theorem lpbl
StepHypRef Expression
1 simpl1 1064 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  P  e.  (
( limPt `  J ) `  S ) )  /\  R  e.  RR+ )  ->  D  e.  ( *Met `  X ) )
2 mopni.1 . . . . . . . . 9  |-  J  =  ( MetOpen `  D )
32mopntop 22245 . . . . . . . 8  |-  ( D  e.  ( *Met `  X )  ->  J  e.  Top )
41, 3syl 17 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  P  e.  (
( limPt `  J ) `  S ) )  /\  R  e.  RR+ )  ->  J  e.  Top )
5 simpl2 1065 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  P  e.  (
( limPt `  J ) `  S ) )  /\  R  e.  RR+ )  ->  S  C_  X )
62mopnuni 22246 . . . . . . . . 9  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
71, 6syl 17 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  P  e.  (
( limPt `  J ) `  S ) )  /\  R  e.  RR+ )  ->  X  =  U. J )
85, 7sseqtrd 3641 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  P  e.  (
( limPt `  J ) `  S ) )  /\  R  e.  RR+ )  ->  S  C_  U. J )
9 eqid 2622 . . . . . . . 8  |-  U. J  =  U. J
109lpss 20946 . . . . . . 7  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( ( limPt `  J ) `  S
)  C_  U. J )
114, 8, 10syl2anc 693 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  P  e.  (
( limPt `  J ) `  S ) )  /\  R  e.  RR+ )  -> 
( ( limPt `  J
) `  S )  C_ 
U. J )
12 simpl3 1066 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  P  e.  (
( limPt `  J ) `  S ) )  /\  R  e.  RR+ )  ->  P  e.  ( ( limPt `  J ) `  S ) )
1311, 12sseldd 3604 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  P  e.  (
( limPt `  J ) `  S ) )  /\  R  e.  RR+ )  ->  P  e.  U. J )
1413, 7eleqtrrd 2704 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  P  e.  (
( limPt `  J ) `  S ) )  /\  R  e.  RR+ )  ->  P  e.  X )
15 simpr 477 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  P  e.  (
( limPt `  J ) `  S ) )  /\  R  e.  RR+ )  ->  R  e.  RR+ )
162blnei 22307 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR+ )  ->  ( P ( ball `  D ) R )  e.  ( ( nei `  J ) `  { P } ) )
171, 14, 15, 16syl3anc 1326 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  P  e.  (
( limPt `  J ) `  S ) )  /\  R  e.  RR+ )  -> 
( P ( ball `  D ) R )  e.  ( ( nei `  J ) `  { P } ) )
189islp2 20949 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  U. J  /\  P  e.  U. J )  ->  ( P  e.  ( ( limPt `  J
) `  S )  <->  A. x  e.  ( ( nei `  J ) `
 { P }
) ( x  i^i  ( S  \  { P } ) )  =/=  (/) ) )
194, 8, 13, 18syl3anc 1326 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  P  e.  (
( limPt `  J ) `  S ) )  /\  R  e.  RR+ )  -> 
( P  e.  ( ( limPt `  J ) `  S )  <->  A. x  e.  ( ( nei `  J
) `  { P } ) ( x  i^i  ( S  \  { P } ) )  =/=  (/) ) )
2012, 19mpbid 222 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  P  e.  (
( limPt `  J ) `  S ) )  /\  R  e.  RR+ )  ->  A. x  e.  (
( nei `  J
) `  { P } ) ( x  i^i  ( S  \  { P } ) )  =/=  (/) )
21 ineq1 3807 . . . . 5  |-  ( x  =  ( P (
ball `  D ) R )  ->  (
x  i^i  ( S  \  { P } ) )  =  ( ( P ( ball `  D
) R )  i^i  ( S  \  { P } ) ) )
2221neeq1d 2853 . . . 4  |-  ( x  =  ( P (
ball `  D ) R )  ->  (
( x  i^i  ( S  \  { P }
) )  =/=  (/)  <->  ( ( P ( ball `  D
) R )  i^i  ( S  \  { P } ) )  =/=  (/) ) )
2322rspcva 3307 . . 3  |-  ( ( ( P ( ball `  D ) R )  e.  ( ( nei `  J ) `  { P } )  /\  A. x  e.  ( ( nei `  J ) `  { P } ) ( x  i^i  ( S 
\  { P }
) )  =/=  (/) )  -> 
( ( P (
ball `  D ) R )  i^i  ( S  \  { P }
) )  =/=  (/) )
2417, 20, 23syl2anc 693 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  P  e.  (
( limPt `  J ) `  S ) )  /\  R  e.  RR+ )  -> 
( ( P (
ball `  D ) R )  i^i  ( S  \  { P }
) )  =/=  (/) )
25 elin 3796 . . . . 5  |-  ( x  e.  ( ( P ( ball `  D
) R )  i^i  ( S  \  { P } ) )  <->  ( x  e.  ( P ( ball `  D ) R )  /\  x  e.  ( S  \  { P } ) ) )
26 eldifi 3732 . . . . . . 7  |-  ( x  e.  ( S  \  { P } )  ->  x  e.  S )
2726anim2i 593 . . . . . 6  |-  ( ( x  e.  ( P ( ball `  D
) R )  /\  x  e.  ( S  \  { P } ) )  ->  ( x  e.  ( P ( ball `  D ) R )  /\  x  e.  S
) )
2827ancomd 467 . . . . 5  |-  ( ( x  e.  ( P ( ball `  D
) R )  /\  x  e.  ( S  \  { P } ) )  ->  ( x  e.  S  /\  x  e.  ( P ( ball `  D ) R ) ) )
2925, 28sylbi 207 . . . 4  |-  ( x  e.  ( ( P ( ball `  D
) R )  i^i  ( S  \  { P } ) )  -> 
( x  e.  S  /\  x  e.  ( P ( ball `  D
) R ) ) )
3029eximi 1762 . . 3  |-  ( E. x  x  e.  ( ( P ( ball `  D ) R )  i^i  ( S  \  { P } ) )  ->  E. x ( x  e.  S  /\  x  e.  ( P ( ball `  D ) R ) ) )
31 n0 3931 . . 3  |-  ( ( ( P ( ball `  D ) R )  i^i  ( S  \  { P } ) )  =/=  (/)  <->  E. x  x  e.  ( ( P (
ball `  D ) R )  i^i  ( S  \  { P }
) ) )
32 df-rex 2918 . . 3  |-  ( E. x  e.  S  x  e.  ( P (
ball `  D ) R )  <->  E. x
( x  e.  S  /\  x  e.  ( P ( ball `  D
) R ) ) )
3330, 31, 323imtr4i 281 . 2  |-  ( ( ( P ( ball `  D ) R )  i^i  ( S  \  { P } ) )  =/=  (/)  ->  E. x  e.  S  x  e.  ( P ( ball `  D
) R ) )
3424, 33syl 17 1  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  P  e.  (
( limPt `  J ) `  S ) )  /\  R  e.  RR+ )  ->  E. x  e.  S  x  e.  ( P
( ball `  D ) R ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   U.cuni 4436   ` cfv 5888  (class class class)co 6650   RR+crp 11832   *Metcxmt 19731   ballcbl 19733   MetOpencmopn 19736   Topctop 20698   neicnei 20901   limPtclp 20938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940
This theorem is referenced by:  limcrecl  39861
  Copyright terms: Public domain W3C validator