Proof of Theorem lshpkrlem5
Step | Hyp | Ref
| Expression |
1 | | lshpkrlem.a |
. . 3
    |
2 | | eqid 2622 |
. . 3
         |
3 | | eqid 2622 |
. . 3
Cntz  Cntz   |
4 | | simp11 1091 |
. . . . . . 7
  
 

          
          
                 |
5 | | lshpkrlem.w |
. . . . . . 7
   |
6 | 4, 5 | syl 17 |
. . . . . 6
  
 

          
          
                 |
7 | | lveclmod 19106 |
. . . . . 6

  |
8 | 6, 7 | syl 17 |
. . . . 5
  
 

          
          
                 |
9 | | eqid 2622 |
. . . . . 6
         |
10 | 9 | lsssssubg 18958 |
. . . . 5

    SubGrp    |
11 | 8, 10 | syl 17 |
. . . 4
  
 

          
          
                  
SubGrp    |
12 | | lshpkrlem.h |
. . . . . 6
LSHyp   |
13 | 5, 7 | syl 17 |
. . . . . 6
   |
14 | | lshpkrlem.u |
. . . . . 6
   |
15 | 9, 12, 13, 14 | lshplss 34268 |
. . . . 5
       |
16 | 4, 15 | syl 17 |
. . . 4
  
 

          
          
                     |
17 | 11, 16 | sseldd 3604 |
. . 3
  
 

          
          
               SubGrp    |
18 | | lshpkrlem.z |
. . . . . 6
   |
19 | 4, 18 | syl 17 |
. . . . 5
  
 

          
          
                 |
20 | | lshpkrlem.v |
. . . . . 6
     |
21 | | lshpkrlem.n |
. . . . . 6
     |
22 | 20, 9, 21 | lspsncl 18977 |
. . . . 5
               |
23 | 8, 19, 22 | syl2anc 693 |
. . . 4
  
 

          
          
                           |
24 | 11, 23 | sseldd 3604 |
. . 3
  
 

          
          
                     SubGrp    |
25 | | lshpkrlem.p |
. . . . 5
     |
26 | | lshpkrlem.e |
. . . . 5
           |
27 | 20, 2, 21, 25, 12, 5, 14, 18, 26 | lshpdisj 34274 |
. . . 4
                 |
28 | 4, 27 | syl 17 |
. . 3
  
 

          
          
                               |
29 | | lmodabl 18910 |
. . . . 5

  |
30 | 8, 29 | syl 17 |
. . . 4
  
 

          
          
                 |
31 | 3, 30, 17, 24 | ablcntzd 18260 |
. . 3
  
 

          
          
                Cntz             |
32 | | simp23r 1183 |
. . 3
  
 

          
          
                 |
33 | | simp12 1092 |
. . . . 5
  
 

          
          
                 |
34 | | simp22 1095 |
. . . . 5
  
 

          
          
                 |
35 | | lshpkrlem.d |
. . . . . 6
Scalar   |
36 | | lshpkrlem.t |
. . . . . 6
     |
37 | | lshpkrlem.k |
. . . . . 6
     |
38 | 35, 36, 37, 9 | lssvscl 18955 |
. . . . 5
        
  
   |
39 | 8, 16, 33, 34, 38 | syl22anc 1327 |
. . . 4
  
 

          
          
                   |
40 | | simp23l 1182 |
. . . 4
  
 

          
          
                 |
41 | 1, 9 | lssvacl 18954 |
. . . 4
          
    
   |
42 | 8, 16, 39, 40, 41 | syl22anc 1327 |
. . 3
  
 

          
          
                     |
43 | | simp13 1093 |
. . . . . . 7
  
 

          
          
                 |
44 | 20, 35, 36, 37 | lmodvscl 18880 |
. . . . . . 7
 
 
   |
45 | 8, 33, 43, 44 | syl3anc 1326 |
. . . . . 6
  
 

          
          
                   |
46 | | simp21 1094 |
. . . . . 6
  
 

          
          
                 |
47 | 20, 1 | lmodvacl 18877 |
. . . . . 6
  

   
   |
48 | 8, 45, 46, 47 | syl3anc 1326 |
. . . . 5
  
 

          
          
                     |
49 | 5 | adantr 481 |
. . . . . 6
 
 
  
  |
50 | 14 | adantr 481 |
. . . . . 6
 
 
  
  |
51 | 18 | adantr 481 |
. . . . . 6
 
 
  
  |
52 | | simpr 477 |
. . . . . 6
 
 
  
 
    |
53 | 26 | adantr 481 |
. . . . . 6
 
 
  
          |
54 | | lshpkrlem.o |
. . . . . 6
     |
55 | | lshpkrlem.g |
. . . . . 6
   
       |
56 | 20, 1, 21, 25, 12, 49, 50, 51, 52, 53, 35, 37, 36, 54, 55 | lshpkrlem2 34398 |
. . . . 5
 
 
  
          |
57 | 4, 48, 56 | syl2anc 693 |
. . . 4
  
 

          
          
                         |
58 | 20, 36, 35, 37, 21, 8, 57, 19 | lspsneli 19001 |
. . 3
  
 

          
          
                                 |
59 | 5 | adantr 481 |
. . . . . . . 8
 
   |
60 | 14 | adantr 481 |
. . . . . . . 8
 
   |
61 | 18 | adantr 481 |
. . . . . . . 8
 
   |
62 | | simpr 477 |
. . . . . . . 8
 
   |
63 | 26 | adantr 481 |
. . . . . . . 8
 
           |
64 | 20, 1, 21, 25, 12, 59, 60, 61, 62, 63, 35, 37, 36, 54, 55 | lshpkrlem2 34398 |
. . . . . . 7
 
       |
65 | 4, 43, 64 | syl2anc 693 |
. . . . . 6
  
 

          
          
                     |
66 | | eqid 2622 |
. . . . . . 7
         |
67 | 35, 37, 66 | lmodmcl 18875 |
. . . . . 6
 
                   |
68 | 8, 33, 65, 67 | syl3anc 1326 |
. . . . 5
  
 

          
          
                             |
69 | 5 | adantr 481 |
. . . . . . 7
 
   |
70 | 14 | adantr 481 |
. . . . . . 7
 
   |
71 | 18 | adantr 481 |
. . . . . . 7
 
   |
72 | | simpr 477 |
. . . . . . 7
 
   |
73 | 26 | adantr 481 |
. . . . . . 7
 
           |
74 | 20, 1, 21, 25, 12, 69, 70, 71, 72, 73, 35, 37, 36, 54, 55 | lshpkrlem2 34398 |
. . . . . 6
 
       |
75 | 4, 46, 74 | syl2anc 693 |
. . . . 5
  
 

          
          
                     |
76 | | eqid 2622 |
. . . . . 6
       |
77 | 35, 37, 76 | lmodacl 18874 |
. . . . 5
                                            |
78 | 8, 68, 75, 77 | syl3anc 1326 |
. . . 4
  
 

          
          
                                        |
79 | 20, 36, 35, 37, 21, 8, 78, 19 | lspsneli 19001 |
. . 3
  
 

          
          
                                                |
80 | | simp33 1099 |
. . . 4
  
 

          
          
                                 |
81 | | simp1 1061 |
. . . . 5
  
 

          
          
               
   |
82 | 20, 9 | lssel 18938 |
. . . . . 6
         |
83 | 16, 34, 82 | syl2anc 693 |
. . . . 5
  
 

          
          
                 |
84 | 20, 9 | lssel 18938 |
. . . . . 6
         |
85 | 16, 40, 84 | syl2anc 693 |
. . . . 5
  
 

          
          
                 |
86 | | simp31 1097 |
. . . . 5
  
 

          
          
                         |
87 | | simp32 1098 |
. . . . 5
  
 

          
          
                         |
88 | | lshpkrlem.x |
. . . . . 6
   |
89 | 20, 1, 21, 25, 12, 5, 14, 18, 88, 26, 35, 37, 36, 54, 55 | lshpkrlem4 34400 |
. . . . 5
  
 
                      
                                  |
90 | 81, 46, 83, 85, 86, 87, 89 | syl132anc 1344 |
. . . 4
  
 

          
          
                       
                            |
91 | 80, 90 | eqtr3d 2658 |
. . 3
  
 

          
          
                               
                            |
92 | 1, 2, 3, 17, 24, 28, 31, 32, 42, 58, 79, 91 | subgdisj2 18105 |
. 2
  
 

          
          
                                                    |
93 | 20, 21, 25, 12, 2, 13, 14, 18, 26 | lshpne0 34273 |
. . . 4
       |
94 | 4, 93 | syl 17 |
. . 3
  
 

          
          
                     |
95 | 20, 36, 35, 37, 2, 6, 57, 78, 19, 94 | lvecvscan2 19112 |
. 2
  
 

          
          
                                                                                     |
96 | 92, 95 | mpbid 222 |
1
  
 

          
          
                                                |