MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspdisj Structured version   Visualization version   Unicode version

Theorem lspdisj 19125
Description: The span of a vector not in a subspace is disjoint with the subspace. (Contributed by NM, 6-Apr-2015.)
Hypotheses
Ref Expression
lspdisj.v  |-  V  =  ( Base `  W
)
lspdisj.o  |-  .0.  =  ( 0g `  W )
lspdisj.n  |-  N  =  ( LSpan `  W )
lspdisj.s  |-  S  =  ( LSubSp `  W )
lspdisj.w  |-  ( ph  ->  W  e.  LVec )
lspdisj.u  |-  ( ph  ->  U  e.  S )
lspdisj.x  |-  ( ph  ->  X  e.  V )
lspdisj.e  |-  ( ph  ->  -.  X  e.  U
)
Assertion
Ref Expression
lspdisj  |-  ( ph  ->  ( ( N `  { X } )  i^i 
U )  =  {  .0.  } )

Proof of Theorem lspdisj
Dummy variables  v 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspdisj.w . . . . . . . . . 10  |-  ( ph  ->  W  e.  LVec )
2 lveclmod 19106 . . . . . . . . . 10  |-  ( W  e.  LVec  ->  W  e. 
LMod )
31, 2syl 17 . . . . . . . . 9  |-  ( ph  ->  W  e.  LMod )
4 lspdisj.x . . . . . . . . 9  |-  ( ph  ->  X  e.  V )
5 eqid 2622 . . . . . . . . . 10  |-  (Scalar `  W )  =  (Scalar `  W )
6 eqid 2622 . . . . . . . . . 10  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
7 lspdisj.v . . . . . . . . . 10  |-  V  =  ( Base `  W
)
8 eqid 2622 . . . . . . . . . 10  |-  ( .s
`  W )  =  ( .s `  W
)
9 lspdisj.n . . . . . . . . . 10  |-  N  =  ( LSpan `  W )
105, 6, 7, 8, 9lspsnel 19003 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
v  e.  ( N `
 { X }
)  <->  E. k  e.  (
Base `  (Scalar `  W
) ) v  =  ( k ( .s
`  W ) X ) ) )
113, 4, 10syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( v  e.  ( N `  { X } )  <->  E. k  e.  ( Base `  (Scalar `  W ) ) v  =  ( k ( .s `  W ) X ) ) )
1211biimpa 501 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( N `  { X } ) )  ->  E. k  e.  ( Base `  (Scalar `  W
) ) v  =  ( k ( .s
`  W ) X ) )
1312adantrr 753 . . . . . 6  |-  ( (
ph  /\  ( v  e.  ( N `  { X } )  /\  v  e.  U ) )  ->  E. k  e.  ( Base `  (Scalar `  W
) ) v  =  ( k ( .s
`  W ) X ) )
14 simprr 796 . . . . . . . . . 10  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  -> 
v  =  ( k ( .s `  W
) X ) )
15 lspdisj.e . . . . . . . . . . . . 13  |-  ( ph  ->  -.  X  e.  U
)
1615ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  ->  -.  X  e.  U
)
17 simplr 792 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  -> 
v  e.  U )
1814, 17eqeltrrd 2702 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  -> 
( k ( .s
`  W ) X )  e.  U )
19 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
20 lspdisj.s . . . . . . . . . . . . . . . 16  |-  S  =  ( LSubSp `  W )
211ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  ->  W  e.  LVec )
22 lspdisj.u . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  U  e.  S )
2322ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  ->  U  e.  S )
244ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  ->  X  e.  V )
25 simprl 794 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  -> 
k  e.  ( Base `  (Scalar `  W )
) )
267, 8, 5, 6, 19, 20, 21, 23, 24, 25lssvs0or 19110 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  -> 
( ( k ( .s `  W ) X )  e.  U  <->  ( k  =  ( 0g
`  (Scalar `  W )
)  \/  X  e.  U ) ) )
2718, 26mpbid 222 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  -> 
( k  =  ( 0g `  (Scalar `  W ) )  \/  X  e.  U ) )
2827orcomd 403 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  -> 
( X  e.  U  \/  k  =  ( 0g `  (Scalar `  W
) ) ) )
2928ord 392 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  -> 
( -.  X  e.  U  ->  k  =  ( 0g `  (Scalar `  W ) ) ) )
3016, 29mpd 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  -> 
k  =  ( 0g
`  (Scalar `  W )
) )
3130oveq1d 6665 . . . . . . . . . 10  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  -> 
( k ( .s
`  W ) X )  =  ( ( 0g `  (Scalar `  W ) ) ( .s `  W ) X ) )
323ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  ->  W  e.  LMod )
33 lspdisj.o . . . . . . . . . . . 12  |-  .0.  =  ( 0g `  W )
347, 5, 8, 19, 33lmod0vs 18896 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( 0g `  (Scalar `  W ) ) ( .s `  W ) X )  =  .0.  )
3532, 24, 34syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  -> 
( ( 0g `  (Scalar `  W ) ) ( .s `  W
) X )  =  .0.  )
3614, 31, 353eqtrd 2660 . . . . . . . . 9  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  -> 
v  =  .0.  )
3736exp32 631 . . . . . . . 8  |-  ( (
ph  /\  v  e.  U )  ->  (
k  e.  ( Base `  (Scalar `  W )
)  ->  ( v  =  ( k ( .s `  W ) X )  ->  v  =  .0.  ) ) )
3837adantrl 752 . . . . . . 7  |-  ( (
ph  /\  ( v  e.  ( N `  { X } )  /\  v  e.  U ) )  -> 
( k  e.  (
Base `  (Scalar `  W
) )  ->  (
v  =  ( k ( .s `  W
) X )  -> 
v  =  .0.  )
) )
3938rexlimdv 3030 . . . . . 6  |-  ( (
ph  /\  ( v  e.  ( N `  { X } )  /\  v  e.  U ) )  -> 
( E. k  e.  ( Base `  (Scalar `  W ) ) v  =  ( k ( .s `  W ) X )  ->  v  =  .0.  ) )
4013, 39mpd 15 . . . . 5  |-  ( (
ph  /\  ( v  e.  ( N `  { X } )  /\  v  e.  U ) )  -> 
v  =  .0.  )
4140ex 450 . . . 4  |-  ( ph  ->  ( ( v  e.  ( N `  { X } )  /\  v  e.  U )  ->  v  =  .0.  ) )
42 elin 3796 . . . 4  |-  ( v  e.  ( ( N `
 { X }
)  i^i  U )  <->  ( v  e.  ( N `
 { X }
)  /\  v  e.  U ) )
43 velsn 4193 . . . 4  |-  ( v  e.  {  .0.  }  <->  v  =  .0.  )
4441, 42, 433imtr4g 285 . . 3  |-  ( ph  ->  ( v  e.  ( ( N `  { X } )  i^i  U
)  ->  v  e.  {  .0.  } ) )
4544ssrdv 3609 . 2  |-  ( ph  ->  ( ( N `  { X } )  i^i 
U )  C_  {  .0.  } )
467, 20, 9lspsncl 18977 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  e.  S
)
473, 4, 46syl2anc 693 . . . 4  |-  ( ph  ->  ( N `  { X } )  e.  S
)
4833, 20lss0ss 18949 . . . 4  |-  ( ( W  e.  LMod  /\  ( N `  { X } )  e.  S
)  ->  {  .0.  } 
C_  ( N `  { X } ) )
493, 47, 48syl2anc 693 . . 3  |-  ( ph  ->  {  .0.  }  C_  ( N `  { X } ) )
5033, 20lss0ss 18949 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  {  .0.  } 
C_  U )
513, 22, 50syl2anc 693 . . 3  |-  ( ph  ->  {  .0.  }  C_  U )
5249, 51ssind 3837 . 2  |-  ( ph  ->  {  .0.  }  C_  ( ( N `  { X } )  i^i 
U ) )
5345, 52eqssd 3620 1  |-  ( ph  ->  ( ( N `  { X } )  i^i 
U )  =  {  .0.  } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913    i^i cin 3573    C_ wss 3574   {csn 4177   ` cfv 5888  (class class class)co 6650   Basecbs 15857  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   LModclmod 18863   LSubSpclss 18932   LSpanclspn 18971   LVecclvec 19102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103
This theorem is referenced by:  lspdisjb  19126  lspdisj2  19127  lvecindp  19138
  Copyright terms: Public domain W3C validator