Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madjusmdetlem2 Structured version   Visualization version   Unicode version

Theorem madjusmdetlem2 29894
Description: Lemma for madjusmdet 29897. (Contributed by Thierry Arnoux, 26-Aug-2020.)
Hypotheses
Ref Expression
madjusmdet.b  |-  B  =  ( Base `  A
)
madjusmdet.a  |-  A  =  ( ( 1 ... N ) Mat  R )
madjusmdet.d  |-  D  =  ( ( 1 ... N ) maDet  R )
madjusmdet.k  |-  K  =  ( ( 1 ... N ) maAdju  R )
madjusmdet.t  |-  .x.  =  ( .r `  R )
madjusmdet.z  |-  Z  =  ( ZRHom `  R
)
madjusmdet.e  |-  E  =  ( ( 1 ... ( N  -  1 ) ) maDet  R )
madjusmdet.n  |-  ( ph  ->  N  e.  NN )
madjusmdet.r  |-  ( ph  ->  R  e.  CRing )
madjusmdet.i  |-  ( ph  ->  I  e.  ( 1 ... N ) )
madjusmdet.j  |-  ( ph  ->  J  e.  ( 1 ... N ) )
madjusmdet.m  |-  ( ph  ->  M  e.  B )
madjusmdetlem2.p  |-  P  =  ( i  e.  ( 1 ... N ) 
|->  if ( i  =  1 ,  I ,  if ( i  <_  I ,  ( i  -  1 ) ,  i ) ) )
madjusmdetlem2.s  |-  S  =  ( i  e.  ( 1 ... N ) 
|->  if ( i  =  1 ,  N ,  if ( i  <_  N ,  ( i  - 
1 ) ,  i ) ) )
Assertion
Ref Expression
madjusmdetlem2  |-  ( (
ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  ->  if ( X  <  I ,  X ,  ( X  +  1 ) )  =  ( ( P  o.  `' S ) `
 X ) )
Distinct variable groups:    B, i    i, I    i, J    i, M    i, N    P, i    R, i    ph, i    S, i
Allowed substitution hints:    A( i)    D( i)    .x. ( i)    E( i)    K( i)    X( i)    Z( i)

Proof of Theorem madjusmdetlem2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 madjusmdet.n . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  NN )
2 nnuz 11723 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
31, 2syl6eleq 2711 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ( ZZ>= ` 
1 ) )
4 eluzfz2 12349 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  1
)  ->  N  e.  ( 1 ... N
) )
53, 4syl 17 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ( 1 ... N ) )
6 eqid 2622 . . . . . . . . . . 11  |-  ( 1 ... N )  =  ( 1 ... N
)
7 madjusmdetlem2.s . . . . . . . . . . 11  |-  S  =  ( i  e.  ( 1 ... N ) 
|->  if ( i  =  1 ,  N ,  if ( i  <_  N ,  ( i  - 
1 ) ,  i ) ) )
8 eqid 2622 . . . . . . . . . . 11  |-  ( SymGrp `  ( 1 ... N
) )  =  (
SymGrp `  ( 1 ... N ) )
9 eqid 2622 . . . . . . . . . . 11  |-  ( Base `  ( SymGrp `  ( 1 ... N ) ) )  =  ( Base `  ( SymGrp `
 ( 1 ... N ) ) )
106, 7, 8, 9fzto1st 29853 . . . . . . . . . 10  |-  ( N  e.  ( 1 ... N )  ->  S  e.  ( Base `  ( SymGrp `
 ( 1 ... N ) ) ) )
115, 10syl 17 . . . . . . . . 9  |-  ( ph  ->  S  e.  ( Base `  ( SymGrp `  ( 1 ... N ) ) ) )
128, 9symgbasf1o 17803 . . . . . . . . 9  |-  ( S  e.  ( Base `  ( SymGrp `
 ( 1 ... N ) ) )  ->  S : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
1311, 12syl 17 . . . . . . . 8  |-  ( ph  ->  S : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
1413adantr 481 . . . . . . 7  |-  ( (
ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  ->  S : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) )
15 fznatpl1 12395 . . . . . . . 8  |-  ( ( N  e.  NN  /\  X  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( X  + 
1 )  e.  ( 1 ... N ) )
161, 15sylan 488 . . . . . . 7  |-  ( (
ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( X  +  1 )  e.  ( 1 ... N ) )
17 eqeq1 2626 . . . . . . . . . . . . 13  |-  ( i  =  x  ->  (
i  =  1  <->  x  =  1 ) )
18 breq1 4656 . . . . . . . . . . . . . 14  |-  ( i  =  x  ->  (
i  <_  N  <->  x  <_  N ) )
19 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( i  =  x  ->  (
i  -  1 )  =  ( x  - 
1 ) )
20 id 22 . . . . . . . . . . . . . 14  |-  ( i  =  x  ->  i  =  x )
2118, 19, 20ifbieq12d 4113 . . . . . . . . . . . . 13  |-  ( i  =  x  ->  if ( i  <_  N ,  ( i  - 
1 ) ,  i )  =  if ( x  <_  N , 
( x  -  1 ) ,  x ) )
2217, 21ifbieq2d 4111 . . . . . . . . . . . 12  |-  ( i  =  x  ->  if ( i  =  1 ,  N ,  if ( i  <_  N ,  ( i  - 
1 ) ,  i ) )  =  if ( x  =  1 ,  N ,  if ( x  <_  N , 
( x  -  1 ) ,  x ) ) )
2322cbvmptv 4750 . . . . . . . . . . 11  |-  ( i  e.  ( 1 ... N )  |->  if ( i  =  1 ,  N ,  if ( i  <_  N , 
( i  -  1 ) ,  i ) ) )  =  ( x  e.  ( 1 ... N )  |->  if ( x  =  1 ,  N ,  if ( x  <_  N , 
( x  -  1 ) ,  x ) ) )
247, 23eqtri 2644 . . . . . . . . . 10  |-  S  =  ( x  e.  ( 1 ... N ) 
|->  if ( x  =  1 ,  N ,  if ( x  <_  N ,  ( x  - 
1 ) ,  x
) ) )
2524a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  ->  S  =  ( x  e.  ( 1 ... N
)  |->  if ( x  =  1 ,  N ,  if ( x  <_  N ,  ( x  -  1 ) ,  x ) ) ) )
26 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  =  ( X  + 
1 ) )  ->  x  =  ( X  +  1 ) )
27 1red 10055 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  =  ( X  + 
1 ) )  -> 
1  e.  RR )
28 fz1ssnn 12372 . . . . . . . . . . . . . . . . . . 19  |-  ( 1 ... ( N  - 
1 ) )  C_  NN
29 simpr 477 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  ->  X  e.  ( 1 ... ( N  -  1 ) ) )
3028, 29sseldi 3601 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  ->  X  e.  NN )
3130nnrpd 11870 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  ->  X  e.  RR+ )
3231adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  =  ( X  + 
1 ) )  ->  X  e.  RR+ )
3327, 32ltaddrp2d 11906 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  =  ( X  + 
1 ) )  -> 
1  <  ( X  +  1 ) )
3427, 33ltned 10173 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  =  ( X  + 
1 ) )  -> 
1  =/=  ( X  +  1 ) )
3534necomd 2849 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  =  ( X  + 
1 ) )  -> 
( X  +  1 )  =/=  1 )
3626, 35eqnetrd 2861 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  =  ( X  + 
1 ) )  ->  x  =/=  1 )
3736neneqd 2799 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  =  ( X  + 
1 ) )  ->  -.  x  =  1
)
3837iffalsed 4097 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  =  ( X  + 
1 ) )  ->  if ( x  =  1 ,  N ,  if ( x  <_  N , 
( x  -  1 ) ,  x ) )  =  if ( x  <_  N , 
( x  -  1 ) ,  x ) )
391adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  ->  N  e.  NN )
4030nnnn0d 11351 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  ->  X  e.  NN0 )
4139nnnn0d 11351 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  ->  N  e.  NN0 )
42 elfzle2 12345 . . . . . . . . . . . . . . . 16  |-  ( X  e.  ( 1 ... ( N  -  1 ) )  ->  X  <_  ( N  -  1 ) )
4329, 42syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  ->  X  <_  ( N  -  1 ) )
44 nn0ltlem1 11437 . . . . . . . . . . . . . . . 16  |-  ( ( X  e.  NN0  /\  N  e.  NN0 )  -> 
( X  <  N  <->  X  <_  ( N  - 
1 ) ) )
4544biimpar 502 . . . . . . . . . . . . . . 15  |-  ( ( ( X  e.  NN0  /\  N  e.  NN0 )  /\  X  <_  ( N  -  1 ) )  ->  X  <  N
)
4640, 41, 43, 45syl21anc 1325 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  ->  X  <  N )
47 nnltp1le 11433 . . . . . . . . . . . . . . 15  |-  ( ( X  e.  NN  /\  N  e.  NN )  ->  ( X  <  N  <->  ( X  +  1 )  <_  N ) )
4847biimpa 501 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  NN  /\  N  e.  NN )  /\  X  <  N
)  ->  ( X  +  1 )  <_  N )
4930, 39, 46, 48syl21anc 1325 . . . . . . . . . . . . 13  |-  ( (
ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( X  +  1 )  <_  N )
5049adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  =  ( X  + 
1 ) )  -> 
( X  +  1 )  <_  N )
5126, 50eqbrtrd 4675 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  =  ( X  + 
1 ) )  ->  x  <_  N )
5251iftrued 4094 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  =  ( X  + 
1 ) )  ->  if ( x  <_  N ,  ( x  - 
1 ) ,  x
)  =  ( x  -  1 ) )
5326oveq1d 6665 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  =  ( X  + 
1 ) )  -> 
( x  -  1 )  =  ( ( X  +  1 )  -  1 ) )
5430nncnd 11036 . . . . . . . . . . . . 13  |-  ( (
ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  ->  X  e.  CC )
55 1cnd 10056 . . . . . . . . . . . . 13  |-  ( (
ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  ->  1  e.  CC )
5654, 55pncand 10393 . . . . . . . . . . . 12  |-  ( (
ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( X  +  1 )  -  1 )  =  X )
5756adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  =  ( X  + 
1 ) )  -> 
( ( X  + 
1 )  -  1 )  =  X )
5853, 57eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  =  ( X  + 
1 ) )  -> 
( x  -  1 )  =  X )
5938, 52, 583eqtrd 2660 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  =  ( X  + 
1 ) )  ->  if ( x  =  1 ,  N ,  if ( x  <_  N , 
( x  -  1 ) ,  x ) )  =  X )
6025, 59, 16, 29fvmptd 6288 . . . . . . . 8  |-  ( (
ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( S `  ( X  +  1 ) )  =  X )
6160idi 2 . . . . . . 7  |-  ( (
ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( S `  ( X  +  1 ) )  =  X )
62 f1ocnvfv 6534 . . . . . . . 8  |-  ( ( S : ( 1 ... N ) -1-1-onto-> ( 1 ... N )  /\  ( X  +  1
)  e.  ( 1 ... N ) )  ->  ( ( S `
 ( X  + 
1 ) )  =  X  ->  ( `' S `  X )  =  ( X  + 
1 ) ) )
6362imp 445 . . . . . . 7  |-  ( ( ( S : ( 1 ... N ) -1-1-onto-> ( 1 ... N )  /\  ( X  + 
1 )  e.  ( 1 ... N ) )  /\  ( S `
 ( X  + 
1 ) )  =  X )  ->  ( `' S `  X )  =  ( X  + 
1 ) )
6414, 16, 61, 63syl21anc 1325 . . . . . 6  |-  ( (
ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( `' S `  X )  =  ( X  + 
1 ) )
6564fveq2d 6195 . . . . 5  |-  ( (
ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( P `  ( `' S `  X )
)  =  ( P `
 ( X  + 
1 ) ) )
6665adantr 481 . . . 4  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  X  <  I )  ->  ( P `  ( `' S `  X )
)  =  ( P `
 ( X  + 
1 ) ) )
67 madjusmdetlem2.p . . . . . . 7  |-  P  =  ( i  e.  ( 1 ... N ) 
|->  if ( i  =  1 ,  I ,  if ( i  <_  I ,  ( i  -  1 ) ,  i ) ) )
6820breq1d 4663 . . . . . . . . . 10  |-  ( i  =  x  ->  (
i  <_  I  <->  x  <_  I ) )
6968, 19, 20ifbieq12d 4113 . . . . . . . . 9  |-  ( i  =  x  ->  if ( i  <_  I ,  ( i  - 
1 ) ,  i )  =  if ( x  <_  I , 
( x  -  1 ) ,  x ) )
7017, 69ifbieq2d 4111 . . . . . . . 8  |-  ( i  =  x  ->  if ( i  =  1 ,  I ,  if ( i  <_  I ,  ( i  - 
1 ) ,  i ) )  =  if ( x  =  1 ,  I ,  if ( x  <_  I ,  ( x  -  1 ) ,  x ) ) )
7170cbvmptv 4750 . . . . . . 7  |-  ( i  e.  ( 1 ... N )  |->  if ( i  =  1 ,  I ,  if ( i  <_  I , 
( i  -  1 ) ,  i ) ) )  =  ( x  e.  ( 1 ... N )  |->  if ( x  =  1 ,  I ,  if ( x  <_  I ,  ( x  -  1 ) ,  x ) ) )
7267, 71eqtri 2644 . . . . . 6  |-  P  =  ( x  e.  ( 1 ... N ) 
|->  if ( x  =  1 ,  I ,  if ( x  <_  I ,  ( x  -  1 ) ,  x ) ) )
7372a1i 11 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  X  <  I )  ->  P  =  ( x  e.  ( 1 ... N
)  |->  if ( x  =  1 ,  I ,  if ( x  <_  I ,  ( x  -  1 ) ,  x ) ) ) )
7433, 26breqtrrd 4681 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  =  ( X  + 
1 ) )  -> 
1  <  x )
7527, 74ltned 10173 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  =  ( X  + 
1 ) )  -> 
1  =/=  x )
7675necomd 2849 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  =  ( X  + 
1 ) )  ->  x  =/=  1 )
7776neneqd 2799 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  =  ( X  + 
1 ) )  ->  -.  x  =  1
)
7877iffalsed 4097 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  =  ( X  + 
1 ) )  ->  if ( x  =  1 ,  I ,  if ( x  <_  I ,  ( x  -  1 ) ,  x ) )  =  if ( x  <_  I , 
( x  -  1 ) ,  x ) )
7978adantlr 751 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 1 ... ( N  - 
1 ) ) )  /\  X  <  I
)  /\  x  =  ( X  +  1
) )  ->  if ( x  =  1 ,  I ,  if ( x  <_  I , 
( x  -  1 ) ,  x ) )  =  if ( x  <_  I , 
( x  -  1 ) ,  x ) )
80 simpr 477 . . . . . . . 8  |-  ( ( ( ( ph  /\  X  e.  ( 1 ... ( N  - 
1 ) ) )  /\  X  <  I
)  /\  x  =  ( X  +  1
) )  ->  x  =  ( X  + 
1 ) )
8130ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ( ph  /\  X  e.  ( 1 ... ( N  - 
1 ) ) )  /\  X  <  I
)  /\  x  =  ( X  +  1
) )  ->  X  e.  NN )
82 fz1ssnn 12372 . . . . . . . . . . 11  |-  ( 1 ... N )  C_  NN
83 madjusmdet.i . . . . . . . . . . 11  |-  ( ph  ->  I  e.  ( 1 ... N ) )
8482, 83sseldi 3601 . . . . . . . . . 10  |-  ( ph  ->  I  e.  NN )
8584ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( ph  /\  X  e.  ( 1 ... ( N  - 
1 ) ) )  /\  X  <  I
)  /\  x  =  ( X  +  1
) )  ->  I  e.  NN )
86 simplr 792 . . . . . . . . 9  |-  ( ( ( ( ph  /\  X  e.  ( 1 ... ( N  - 
1 ) ) )  /\  X  <  I
)  /\  x  =  ( X  +  1
) )  ->  X  <  I )
87 nnltp1le 11433 . . . . . . . . . 10  |-  ( ( X  e.  NN  /\  I  e.  NN )  ->  ( X  <  I  <->  ( X  +  1 )  <_  I ) )
8887biimpa 501 . . . . . . . . 9  |-  ( ( ( X  e.  NN  /\  I  e.  NN )  /\  X  <  I
)  ->  ( X  +  1 )  <_  I )
8981, 85, 86, 88syl21anc 1325 . . . . . . . 8  |-  ( ( ( ( ph  /\  X  e.  ( 1 ... ( N  - 
1 ) ) )  /\  X  <  I
)  /\  x  =  ( X  +  1
) )  ->  ( X  +  1 )  <_  I )
9080, 89eqbrtrd 4675 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 1 ... ( N  - 
1 ) ) )  /\  X  <  I
)  /\  x  =  ( X  +  1
) )  ->  x  <_  I )
9190iftrued 4094 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 1 ... ( N  - 
1 ) ) )  /\  X  <  I
)  /\  x  =  ( X  +  1
) )  ->  if ( x  <_  I ,  ( x  -  1 ) ,  x )  =  ( x  - 
1 ) )
9258adantlr 751 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 1 ... ( N  - 
1 ) ) )  /\  X  <  I
)  /\  x  =  ( X  +  1
) )  ->  (
x  -  1 )  =  X )
9379, 91, 923eqtrd 2660 . . . . 5  |-  ( ( ( ( ph  /\  X  e.  ( 1 ... ( N  - 
1 ) ) )  /\  X  <  I
)  /\  x  =  ( X  +  1
) )  ->  if ( x  =  1 ,  I ,  if ( x  <_  I , 
( x  -  1 ) ,  x ) )  =  X )
9416adantr 481 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  X  <  I )  ->  ( X  +  1 )  e.  ( 1 ... N ) )
95 simplr 792 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  X  <  I )  ->  X  e.  ( 1 ... ( N  -  1 ) ) )
9673, 93, 94, 95fvmptd 6288 . . . 4  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  X  <  I )  ->  ( P `  ( X  +  1 ) )  =  X )
9766, 96eqtr2d 2657 . . 3  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  X  <  I )  ->  X  =  ( P `  ( `' S `  X ) ) )
9865adantr 481 . . . 4  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  -.  X  <  I )  -> 
( P `  ( `' S `  X ) )  =  ( P `
 ( X  + 
1 ) ) )
9972a1i 11 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  -.  X  <  I )  ->  P  =  ( x  e.  ( 1 ... N
)  |->  if ( x  =  1 ,  I ,  if ( x  <_  I ,  ( x  -  1 ) ,  x ) ) ) )
10078adantlr 751 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 1 ... ( N  - 
1 ) ) )  /\  -.  X  < 
I )  /\  x  =  ( X  + 
1 ) )  ->  if ( x  =  1 ,  I ,  if ( x  <_  I ,  ( x  -  1 ) ,  x ) )  =  if ( x  <_  I , 
( x  -  1 ) ,  x ) )
10130ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  X  e.  ( 1 ... ( N  - 
1 ) ) )  /\  x  =  ( X  +  1 ) )  /\  x  <_  I )  ->  X  e.  NN )
10284ad3antrrr 766 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  X  e.  ( 1 ... ( N  - 
1 ) ) )  /\  x  =  ( X  +  1 ) )  /\  x  <_  I )  ->  I  e.  NN )
10326adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  X  e.  ( 1 ... ( N  - 
1 ) ) )  /\  x  =  ( X  +  1 ) )  /\  x  <_  I )  ->  x  =  ( X  + 
1 ) )
104 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  X  e.  ( 1 ... ( N  - 
1 ) ) )  /\  x  =  ( X  +  1 ) )  /\  x  <_  I )  ->  x  <_  I )
105103, 104eqbrtrrd 4677 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  X  e.  ( 1 ... ( N  - 
1 ) ) )  /\  x  =  ( X  +  1 ) )  /\  x  <_  I )  ->  ( X  +  1 )  <_  I )
10687biimpar 502 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  NN  /\  I  e.  NN )  /\  ( X  + 
1 )  <_  I
)  ->  X  <  I )
107101, 102, 105, 106syl21anc 1325 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  X  e.  ( 1 ... ( N  - 
1 ) ) )  /\  x  =  ( X  +  1 ) )  /\  x  <_  I )  ->  X  <  I )
108107ex 450 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  =  ( X  + 
1 ) )  -> 
( x  <_  I  ->  X  <  I ) )
109108con3d 148 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  =  ( X  + 
1 ) )  -> 
( -.  X  < 
I  ->  -.  x  <_  I ) )
110109imp 445 . . . . . . . . 9  |-  ( ( ( ( ph  /\  X  e.  ( 1 ... ( N  - 
1 ) ) )  /\  x  =  ( X  +  1 ) )  /\  -.  X  <  I )  ->  -.  x  <_  I )
111110an32s 846 . . . . . . . 8  |-  ( ( ( ( ph  /\  X  e.  ( 1 ... ( N  - 
1 ) ) )  /\  -.  X  < 
I )  /\  x  =  ( X  + 
1 ) )  ->  -.  x  <_  I )
112111iffalsed 4097 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 1 ... ( N  - 
1 ) ) )  /\  -.  X  < 
I )  /\  x  =  ( X  + 
1 ) )  ->  if ( x  <_  I ,  ( x  - 
1 ) ,  x
)  =  x )
113 simpr 477 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 1 ... ( N  - 
1 ) ) )  /\  -.  X  < 
I )  /\  x  =  ( X  + 
1 ) )  ->  x  =  ( X  +  1 ) )
114112, 113eqtrd 2656 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 1 ... ( N  - 
1 ) ) )  /\  -.  X  < 
I )  /\  x  =  ( X  + 
1 ) )  ->  if ( x  <_  I ,  ( x  - 
1 ) ,  x
)  =  ( X  +  1 ) )
115100, 114eqtrd 2656 . . . . 5  |-  ( ( ( ( ph  /\  X  e.  ( 1 ... ( N  - 
1 ) ) )  /\  -.  X  < 
I )  /\  x  =  ( X  + 
1 ) )  ->  if ( x  =  1 ,  I ,  if ( x  <_  I ,  ( x  -  1 ) ,  x ) )  =  ( X  +  1 ) )
11616adantr 481 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  -.  X  <  I )  -> 
( X  +  1 )  e.  ( 1 ... N ) )
11799, 115, 116, 116fvmptd 6288 . . . 4  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  -.  X  <  I )  -> 
( P `  ( X  +  1 ) )  =  ( X  +  1 ) )
11898, 117eqtr2d 2657 . . 3  |-  ( ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  /\  -.  X  <  I )  -> 
( X  +  1 )  =  ( P `
 ( `' S `  X ) ) )
11997, 118ifeqda 4121 . 2  |-  ( (
ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  ->  if ( X  <  I ,  X ,  ( X  +  1 ) )  =  ( P `  ( `' S `  X ) ) )
120 f1ocnv 6149 . . . . . 6  |-  ( S : ( 1 ... N ) -1-1-onto-> ( 1 ... N
)  ->  `' S : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) )
12111, 12, 1203syl 18 . . . . 5  |-  ( ph  ->  `' S : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
122 f1ofun 6139 . . . . 5  |-  ( `' S : ( 1 ... N ) -1-1-onto-> ( 1 ... N )  ->  Fun  `' S )
123121, 122syl 17 . . . 4  |-  ( ph  ->  Fun  `' S )
124123adantr 481 . . 3  |-  ( (
ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  ->  Fun  `' S )
125 fzdif2 29551 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  1
)  ->  ( (
1 ... N )  \  { N } )  =  ( 1 ... ( N  -  1 ) ) )
1263, 125syl 17 . . . . . . 7  |-  ( ph  ->  ( ( 1 ... N )  \  { N } )  =  ( 1 ... ( N  -  1 ) ) )
127 difss 3737 . . . . . . 7  |-  ( ( 1 ... N ) 
\  { N }
)  C_  ( 1 ... N )
128126, 127syl6eqssr 3656 . . . . . 6  |-  ( ph  ->  ( 1 ... ( N  -  1 ) )  C_  ( 1 ... N ) )
129 f1odm 6141 . . . . . . 7  |-  ( `' S : ( 1 ... N ) -1-1-onto-> ( 1 ... N )  ->  dom  `' S  =  (
1 ... N ) )
130121, 129syl 17 . . . . . 6  |-  ( ph  ->  dom  `' S  =  ( 1 ... N
) )
131128, 130sseqtr4d 3642 . . . . 5  |-  ( ph  ->  ( 1 ... ( N  -  1 ) )  C_  dom  `' S
)
132131adantr 481 . . . 4  |-  ( (
ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
1 ... ( N  - 
1 ) )  C_  dom  `' S )
133132, 29sseldd 3604 . . 3  |-  ( (
ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  ->  X  e.  dom  `' S )
134 fvco 6274 . . 3  |-  ( ( Fun  `' S  /\  X  e.  dom  `' S
)  ->  ( ( P  o.  `' S
) `  X )  =  ( P `  ( `' S `  X ) ) )
135124, 133, 134syl2anc 693 . 2  |-  ( (
ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( P  o.  `' S ) `  X
)  =  ( P `
 ( `' S `  X ) ) )
136119, 135eqtr4d 2659 1  |-  ( (
ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  ->  if ( X  <  I ,  X ,  ( X  +  1 ) )  =  ( ( P  o.  `' S ) `
 X ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    \ cdif 3571    C_ wss 3574   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114    o. ccom 5118   Fun wfun 5882   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZ>=cuz 11687   RR+crp 11832   ...cfz 12326   Basecbs 15857   .rcmulr 15942   SymGrpcsymg 17797   CRingccrg 18548   ZRHomczrh 19848   Mat cmat 20213   maDet cmdat 20390   maAdju cmadu 20438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-tset 15960  df-symg 17798  df-pmtr 17862
This theorem is referenced by:  madjusmdetlem3  29895
  Copyright terms: Public domain W3C validator