Proof of Theorem madjusmdetlem3
Step | Hyp | Ref
| Expression |
1 | | madjusmdet.n |
. . . . . . . . . . 11
   |
2 | | nnuz 11723 |
. . . . . . . . . . 11
     |
3 | 1, 2 | syl6eleq 2711 |
. . . . . . . . . 10
       |
4 | | fzdif2 29551 |
. . . . . . . . . 10
    
           
    |
5 | 3, 4 | syl 17 |
. . . . . . . . 9
                 |
6 | | difss 3737 |
. . . . . . . . 9
       
     |
7 | 5, 6 | syl6eqssr 3656 |
. . . . . . . 8
    
 
      |
8 | 7 | adantr 481 |
. . . . . . 7
 
    
     
       
 
      |
9 | | simprl 794 |
. . . . . . 7
 
    
     
            |
10 | 8, 9 | sseldd 3604 |
. . . . . 6
 
    
     
          |
11 | | simprr 796 |
. . . . . . 7
 
    
     
            |
12 | 8, 11 | sseldd 3604 |
. . . . . 6
 
    
     
          |
13 | | ovexd 6680 |
. . . . . 6
 
    
     
                        |
14 | | madjusmdetlem3.w |
. . . . . . 7
                              |
15 | 14 | ovmpt4g 6783 |
. . . . . 6
     
                                               |
16 | 10, 12, 13, 15 | syl3anc 1326 |
. . . . 5
 
    
     
                            |
17 | 9, 11 | ovresd 6801 |
. . . . 5
 
    
     
                              |
18 | | eqid 2622 |
. . . . . . 7
  subMat1      subMat1     |
19 | 1 | adantr 481 |
. . . . . . 7
 
    
     
   
  |
20 | | madjusmdet.i |
. . . . . . . 8
       |
21 | 20 | adantr 481 |
. . . . . . 7
 
    
     
   
      |
22 | | madjusmdet.j |
. . . . . . . 8
       |
23 | 22 | adantr 481 |
. . . . . . 7
 
    
     
   
      |
24 | | madjusmdetlem3.u |
. . . . . . . . 9
   |
25 | | madjusmdet.a |
. . . . . . . . . 10
     Mat   |
26 | | eqid 2622 |
. . . . . . . . . 10
         |
27 | | madjusmdet.b |
. . . . . . . . . 10
     |
28 | 25, 26, 27 | matbas2i 20228 |
. . . . . . . . 9
     
             |
29 | 24, 28 | syl 17 |
. . . . . . . 8
                   |
30 | 29 | adantr 481 |
. . . . . . 7
 
    
     
   
                  |
31 | | fz1ssnn 12372 |
. . . . . . . 8
     |
32 | 31, 10 | sseldi 3601 |
. . . . . . 7
 
    
     
      |
33 | 31, 12 | sseldi 3601 |
. . . . . . 7
 
    
     
      |
34 | | eqidd 2623 |
. . . . . . 7
 
    
     
                    |
35 | | eqidd 2623 |
. . . . . . 7
 
    
     
                    |
36 | 18, 19, 19, 21, 23, 30, 32, 33, 34, 35 | smatlem 29863 |
. . . . . 6
 
    
     
        subMat1                          |
37 | | madjusmdet.d |
. . . . . . . . 9
     maDet   |
38 | | madjusmdet.k |
. . . . . . . . 9
     maAdju   |
39 | | madjusmdet.t |
. . . . . . . . 9
     |
40 | | madjusmdet.z |
. . . . . . . . 9
 RHom   |
41 | | madjusmdet.e |
. . . . . . . . 9
       maDet   |
42 | | madjusmdet.r |
. . . . . . . . 9
   |
43 | | madjusmdet.m |
. . . . . . . . 9
   |
44 | | madjusmdetlem2.p |
. . . . . . . . 9
           
       |
45 | | madjusmdetlem2.s |
. . . . . . . . 9
                   |
46 | 27, 25, 37, 38, 39, 40, 41, 1, 42, 20, 20, 43, 44, 45 | madjusmdetlem2 29894 |
. . . . . . . 8
 
   
                   |
47 | 9, 46 | syldan 487 |
. . . . . . 7
 
    
     
                    |
48 | | madjusmdetlem4.q |
. . . . . . . . 9
                   |
49 | | madjusmdetlem4.t |
. . . . . . . . 9
                   |
50 | 27, 25, 37, 38, 39, 40, 41, 1, 42, 22, 22, 43, 48, 49 | madjusmdetlem2 29894 |
. . . . . . . 8
 
   
                   |
51 | 11, 50 | syldan 487 |
. . . . . . 7
 
    
     
                    |
52 | 47, 51 | oveq12d 6668 |
. . . . . 6
 
    
     
                                          |
53 | 36, 52 | eqtrd 2656 |
. . . . 5
 
    
     
        subMat1                          |
54 | 16, 17, 53 | 3eqtr4rd 2667 |
. . . 4
 
    
     
        subMat1        
          
        |
55 | 54 | ralrimivva 2971 |
. . 3
                     subMat1        
          
        |
56 | | eqid 2622 |
. . . . 5
          Mat             Mat    |
57 | 25, 27, 56, 18, 1, 20, 22, 24 | smatcl 29868 |
. . . 4
   subMat1           
  Mat     |
58 | | fzfid 12772 |
. . . . . . . 8
       |
59 | | eqid 2622 |
. . . . . . . . . . . . . 14
         |
60 | | eqid 2622 |
. . . . . . . . . . . . . 14
                 |
61 | | eqid 2622 |
. . . . . . . . . . . . . 14
                         |
62 | 59, 44, 60, 61 | fzto1st 29853 |
. . . . . . . . . . . . 13
                   |
63 | 20, 62 | syl 17 |
. . . . . . . . . . . 12
               |
64 | | eluzfz2 12349 |
. . . . . . . . . . . . . . . 16
    
      |
65 | 3, 64 | syl 17 |
. . . . . . . . . . . . . . 15
       |
66 | 59, 45, 60, 61 | fzto1st 29853 |
. . . . . . . . . . . . . . 15
                   |
67 | 65, 66 | syl 17 |
. . . . . . . . . . . . . 14
               |
68 | | eqid 2622 |
. . . . . . . . . . . . . . 15
                           |
69 | 60, 61, 68 | symginv 17822 |
. . . . . . . . . . . . . 14
                                 |
70 | 67, 69 | syl 17 |
. . . . . . . . . . . . 13
                     |
71 | 60 | symggrp 17820 |
. . . . . . . . . . . . . . 15
               |
72 | 58, 71 | syl 17 |
. . . . . . . . . . . . . 14
           |
73 | 61, 68 | grpinvcl 17467 |
. . . . . . . . . . . . . 14
         
                                            |
74 | 72, 67, 73 | syl2anc 693 |
. . . . . . . . . . . . 13
                                |
75 | 70, 74 | eqeltrrd 2702 |
. . . . . . . . . . . 12
 
              |
76 | | eqid 2622 |
. . . . . . . . . . . . . 14
                       |
77 | 60, 61, 76 | symgov 17810 |
. . . . . . . . . . . . 13
                           
  
                  |
78 | 60, 61, 76 | symgcl 17811 |
. . . . . . . . . . . . 13
                           
  
                           |
79 | 77, 78 | eqeltrrd 2702 |
. . . . . . . . . . . 12
                           
                 |
80 | 63, 75, 79 | syl2anc 693 |
. . . . . . . . . . 11
                  |
81 | 80 | 3ad2ant1 1082 |
. . . . . . . . . 10
 
   
     
                |
82 | | simp2 1062 |
. . . . . . . . . 10
 
   
           |
83 | 60, 61 | symgfv 17807 |
. . . . . . . . . 10
                
                  |
84 | 81, 82, 83 | syl2anc 693 |
. . . . . . . . 9
 
   
                  |
85 | 59, 48, 60, 61 | fzto1st 29853 |
. . . . . . . . . . . . 13
                   |
86 | 22, 85 | syl 17 |
. . . . . . . . . . . 12
               |
87 | 59, 49, 60, 61 | fzto1st 29853 |
. . . . . . . . . . . . . . 15
                   |
88 | 65, 87 | syl 17 |
. . . . . . . . . . . . . 14
               |
89 | 60, 61, 68 | symginv 17822 |
. . . . . . . . . . . . . 14
                                 |
90 | 88, 89 | syl 17 |
. . . . . . . . . . . . 13
                     |
91 | 61, 68 | grpinvcl 17467 |
. . . . . . . . . . . . . 14
         
                                            |
92 | 72, 88, 91 | syl2anc 693 |
. . . . . . . . . . . . 13
                                |
93 | 90, 92 | eqeltrrd 2702 |
. . . . . . . . . . . 12
 
              |
94 | 60, 61, 76 | symgov 17810 |
. . . . . . . . . . . . 13
                           
  
                  |
95 | 60, 61, 76 | symgcl 17811 |
. . . . . . . . . . . . 13
                           
  
                           |
96 | 94, 95 | eqeltrrd 2702 |
. . . . . . . . . . . 12
                           
                 |
97 | 86, 93, 96 | syl2anc 693 |
. . . . . . . . . . 11
                  |
98 | 97 | 3ad2ant1 1082 |
. . . . . . . . . 10
 
   
     
                |
99 | | simp3 1063 |
. . . . . . . . . 10
 
   
           |
100 | 60, 61 | symgfv 17807 |
. . . . . . . . . 10
                
                  |
101 | 98, 99, 100 | syl2anc 693 |
. . . . . . . . 9
 
   
                  |
102 | 24 | 3ad2ant1 1082 |
. . . . . . . . 9
 
   
       |
103 | 25, 26, 27, 84, 101, 102 | matecld 20232 |
. . . . . . . 8
 
   
                             |
104 | 25, 26, 27, 58, 42, 103 | matbas2d 20229 |
. . . . . . 7
                                |
105 | 14, 104 | syl5eqel 2705 |
. . . . . 6
   |
106 | 25, 27 | submatres 29872 |
. . . . . 6
 
   subMat1         
            |
107 | 1, 105, 106 | syl2anc 693 |
. . . . 5
   subMat1         
            |
108 | | eqid 2622 |
. . . . . 6
  subMat1      subMat1     |
109 | 25, 27, 56, 108, 1, 65, 65, 105 | smatcl 29868 |
. . . . 5
   subMat1           
  Mat     |
110 | 107, 109 | eqeltrrd 2702 |
. . . 4
      
                    Mat     |
111 | | eqid 2622 |
. . . . 5
       Mat      
  Mat   |
112 | 111, 56 | eqmat 20230 |
. . . 4
    subMat1           
  Mat                             Mat       subMat1         
                              subMat1        
          
         |
113 | 57, 110, 112 | syl2anc 693 |
. . 3
    subMat1                                        subMat1        
          
         |
114 | 55, 113 | mpbird 247 |
. 2
   subMat1         
            |
115 | 114, 107 | eqtr4d 2659 |
1
   subMat1      subMat1      |