MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mod2xnegi Structured version   Visualization version   Unicode version

Theorem mod2xnegi 15775
Description: Version of mod2xi 15773 with a negative mod value. (Contributed by Mario Carneiro, 21-Feb-2014.)
Hypotheses
Ref Expression
mod2xnegi.1  |-  A  e.  NN
mod2xnegi.2  |-  B  e. 
NN0
mod2xnegi.3  |-  D  e.  ZZ
mod2xnegi.4  |-  K  e.  NN
mod2xnegi.5  |-  M  e. 
NN0
mod2xnegi.6  |-  L  e. 
NN0
mod2xnegi.10  |-  ( ( A ^ B )  mod  N )  =  ( L  mod  N
)
mod2xnegi.7  |-  ( 2  x.  B )  =  E
mod2xnegi.8  |-  ( L  +  K )  =  N
mod2xnegi.9  |-  ( ( D  x.  N )  +  M )  =  ( K  x.  K
)
Assertion
Ref Expression
mod2xnegi  |-  ( ( A ^ E )  mod  N )  =  ( M  mod  N
)

Proof of Theorem mod2xnegi
StepHypRef Expression
1 mod2xnegi.8 . . 3  |-  ( L  +  K )  =  N
2 mod2xnegi.6 . . . 4  |-  L  e. 
NN0
3 mod2xnegi.4 . . . 4  |-  K  e.  NN
4 nn0nnaddcl 11324 . . . 4  |-  ( ( L  e.  NN0  /\  K  e.  NN )  ->  ( L  +  K
)  e.  NN )
52, 3, 4mp2an 708 . . 3  |-  ( L  +  K )  e.  NN
61, 5eqeltrri 2698 . 2  |-  N  e.  NN
7 mod2xnegi.1 . 2  |-  A  e.  NN
8 mod2xnegi.2 . 2  |-  B  e. 
NN0
96nnzi 11401 . . . 4  |-  N  e.  ZZ
10 mod2xnegi.3 . . . 4  |-  D  e.  ZZ
11 zaddcl 11417 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ )  ->  ( N  +  D
)  e.  ZZ )
129, 10, 11mp2an 708 . . 3  |-  ( N  +  D )  e.  ZZ
133nnnn0i 11300 . . . . 5  |-  K  e. 
NN0
1413, 13nn0addcli 11330 . . . 4  |-  ( K  +  K )  e. 
NN0
1514nn0zi 11402 . . 3  |-  ( K  +  K )  e.  ZZ
16 zsubcl 11419 . . 3  |-  ( ( ( N  +  D
)  e.  ZZ  /\  ( K  +  K
)  e.  ZZ )  ->  ( ( N  +  D )  -  ( K  +  K
) )  e.  ZZ )
1712, 15, 16mp2an 708 . 2  |-  ( ( N  +  D )  -  ( K  +  K ) )  e.  ZZ
18 mod2xnegi.5 . 2  |-  M  e. 
NN0
19 mod2xnegi.10 . 2  |-  ( ( A ^ B )  mod  N )  =  ( L  mod  N
)
20 mod2xnegi.7 . 2  |-  ( 2  x.  B )  =  E
216nncni 11030 . . . . . 6  |-  N  e.  CC
22 zcn 11382 . . . . . . 7  |-  ( D  e.  ZZ  ->  D  e.  CC )
2310, 22ax-mp 5 . . . . . 6  |-  D  e.  CC
2421, 23addcli 10044 . . . . 5  |-  ( N  +  D )  e.  CC
253nncni 11030 . . . . . 6  |-  K  e.  CC
2625, 25addcli 10044 . . . . 5  |-  ( K  +  K )  e.  CC
2724, 26, 21subdiri 10480 . . . 4  |-  ( ( ( N  +  D
)  -  ( K  +  K ) )  x.  N )  =  ( ( ( N  +  D )  x.  N )  -  (
( K  +  K
)  x.  N ) )
2827oveq1i 6660 . . 3  |-  ( ( ( ( N  +  D )  -  ( K  +  K )
)  x.  N )  +  M )  =  ( ( ( ( N  +  D )  x.  N )  -  ( ( K  +  K )  x.  N
) )  +  M
)
2924, 21mulcli 10045 . . . 4  |-  ( ( N  +  D )  x.  N )  e.  CC
3018nn0cni 11304 . . . 4  |-  M  e.  CC
3126, 21mulcli 10045 . . . 4  |-  ( ( K  +  K )  x.  N )  e.  CC
3229, 30, 31addsubi 10373 . . 3  |-  ( ( ( ( N  +  D )  x.  N
)  +  M )  -  ( ( K  +  K )  x.  N ) )  =  ( ( ( ( N  +  D )  x.  N )  -  ( ( K  +  K )  x.  N
) )  +  M
)
33 mod2xnegi.9 . . . . . . 7  |-  ( ( D  x.  N )  +  M )  =  ( K  x.  K
)
3433oveq2i 6661 . . . . . 6  |-  ( ( N  x.  N )  +  ( ( D  x.  N )  +  M ) )  =  ( ( N  x.  N )  +  ( K  x.  K ) )
3521, 25, 25adddii 10050 . . . . . 6  |-  ( N  x.  ( K  +  K ) )  =  ( ( N  x.  K )  +  ( N  x.  K ) )
3634, 35oveq12i 6662 . . . . 5  |-  ( ( ( N  x.  N
)  +  ( ( D  x.  N )  +  M ) )  -  ( N  x.  ( K  +  K
) ) )  =  ( ( ( N  x.  N )  +  ( K  x.  K
) )  -  (
( N  x.  K
)  +  ( N  x.  K ) ) )
3721, 23, 21adddiri 10051 . . . . . . . 8  |-  ( ( N  +  D )  x.  N )  =  ( ( N  x.  N )  +  ( D  x.  N ) )
3837oveq1i 6660 . . . . . . 7  |-  ( ( ( N  +  D
)  x.  N )  +  M )  =  ( ( ( N  x.  N )  +  ( D  x.  N
) )  +  M
)
3921, 21mulcli 10045 . . . . . . . 8  |-  ( N  x.  N )  e.  CC
4023, 21mulcli 10045 . . . . . . . 8  |-  ( D  x.  N )  e.  CC
4139, 40, 30addassi 10048 . . . . . . 7  |-  ( ( ( N  x.  N
)  +  ( D  x.  N ) )  +  M )  =  ( ( N  x.  N )  +  ( ( D  x.  N
)  +  M ) )
4238, 41eqtr2i 2645 . . . . . 6  |-  ( ( N  x.  N )  +  ( ( D  x.  N )  +  M ) )  =  ( ( ( N  +  D )  x.  N )  +  M
)
4321, 26mulcomi 10046 . . . . . 6  |-  ( N  x.  ( K  +  K ) )  =  ( ( K  +  K )  x.  N
)
4442, 43oveq12i 6662 . . . . 5  |-  ( ( ( N  x.  N
)  +  ( ( D  x.  N )  +  M ) )  -  ( N  x.  ( K  +  K
) ) )  =  ( ( ( ( N  +  D )  x.  N )  +  M )  -  (
( K  +  K
)  x.  N ) )
4536, 44eqtr3i 2646 . . . 4  |-  ( ( ( N  x.  N
)  +  ( K  x.  K ) )  -  ( ( N  x.  K )  +  ( N  x.  K
) ) )  =  ( ( ( ( N  +  D )  x.  N )  +  M )  -  (
( K  +  K
)  x.  N ) )
46 mulsub 10473 . . . . . 6  |-  ( ( ( N  e.  CC  /\  K  e.  CC )  /\  ( N  e.  CC  /\  K  e.  CC ) )  -> 
( ( N  -  K )  x.  ( N  -  K )
)  =  ( ( ( N  x.  N
)  +  ( K  x.  K ) )  -  ( ( N  x.  K )  +  ( N  x.  K
) ) ) )
4721, 25, 21, 25, 46mp4an 709 . . . . 5  |-  ( ( N  -  K )  x.  ( N  -  K ) )  =  ( ( ( N  x.  N )  +  ( K  x.  K
) )  -  (
( N  x.  K
)  +  ( N  x.  K ) ) )
482nn0cni 11304 . . . . . . . 8  |-  L  e.  CC
4921, 25, 48subadd2i 10369 . . . . . . 7  |-  ( ( N  -  K )  =  L  <->  ( L  +  K )  =  N )
501, 49mpbir 221 . . . . . 6  |-  ( N  -  K )  =  L
5150, 50oveq12i 6662 . . . . 5  |-  ( ( N  -  K )  x.  ( N  -  K ) )  =  ( L  x.  L
)
5247, 51eqtr3i 2646 . . . 4  |-  ( ( ( N  x.  N
)  +  ( K  x.  K ) )  -  ( ( N  x.  K )  +  ( N  x.  K
) ) )  =  ( L  x.  L
)
5345, 52eqtr3i 2646 . . 3  |-  ( ( ( ( N  +  D )  x.  N
)  +  M )  -  ( ( K  +  K )  x.  N ) )  =  ( L  x.  L
)
5428, 32, 533eqtr2i 2650 . 2  |-  ( ( ( ( N  +  D )  -  ( K  +  K )
)  x.  N )  +  M )  =  ( L  x.  L
)
556, 7, 8, 17, 2, 18, 19, 20, 54mod2xi 15773 1  |-  ( ( A ^ E )  mod  N )  =  ( M  mod  N
)
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e. wcel 1990  (class class class)co 6650   CCcc 9934    + caddc 9939    x. cmul 9941    - cmin 10266   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377    mod cmo 12668   ^cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861
This theorem is referenced by:  1259lem4  15841  2503lem2  15845
  Copyright terms: Public domain W3C validator