MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulginvcom Structured version   Visualization version   Unicode version

Theorem mulginvcom 17565
Description: The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
Hypotheses
Ref Expression
mulginvcom.b  |-  B  =  ( Base `  G
)
mulginvcom.t  |-  .x.  =  (.g
`  G )
mulginvcom.i  |-  I  =  ( invg `  G )
Assertion
Ref Expression
mulginvcom  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  ( I `  X ) )  =  ( I `  ( N  .x.  X ) ) )

Proof of Theorem mulginvcom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6657 . . . . . 6  |-  ( x  =  0  ->  (
x  .x.  ( I `  X ) )  =  ( 0  .x.  (
I `  X )
) )
2 oveq1 6657 . . . . . . 7  |-  ( x  =  0  ->  (
x  .x.  X )  =  ( 0  .x. 
X ) )
32fveq2d 6195 . . . . . 6  |-  ( x  =  0  ->  (
I `  ( x  .x.  X ) )  =  ( I `  (
0  .x.  X )
) )
41, 3eqeq12d 2637 . . . . 5  |-  ( x  =  0  ->  (
( x  .x.  (
I `  X )
)  =  ( I `
 ( x  .x.  X ) )  <->  ( 0 
.x.  ( I `  X ) )  =  ( I `  (
0  .x.  X )
) ) )
5 oveq1 6657 . . . . . 6  |-  ( x  =  y  ->  (
x  .x.  ( I `  X ) )  =  ( y  .x.  (
I `  X )
) )
6 oveq1 6657 . . . . . . 7  |-  ( x  =  y  ->  (
x  .x.  X )  =  ( y  .x.  X ) )
76fveq2d 6195 . . . . . 6  |-  ( x  =  y  ->  (
I `  ( x  .x.  X ) )  =  ( I `  (
y  .x.  X )
) )
85, 7eqeq12d 2637 . . . . 5  |-  ( x  =  y  ->  (
( x  .x.  (
I `  X )
)  =  ( I `
 ( x  .x.  X ) )  <->  ( y  .x.  ( I `  X
) )  =  ( I `  ( y 
.x.  X ) ) ) )
9 oveq1 6657 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
x  .x.  ( I `  X ) )  =  ( ( y  +  1 )  .x.  (
I `  X )
) )
10 oveq1 6657 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
x  .x.  X )  =  ( ( y  +  1 )  .x.  X ) )
1110fveq2d 6195 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
I `  ( x  .x.  X ) )  =  ( I `  (
( y  +  1 )  .x.  X ) ) )
129, 11eqeq12d 2637 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
( x  .x.  (
I `  X )
)  =  ( I `
 ( x  .x.  X ) )  <->  ( (
y  +  1 ) 
.x.  ( I `  X ) )  =  ( I `  (
( y  +  1 )  .x.  X ) ) ) )
13 oveq1 6657 . . . . . 6  |-  ( x  =  -u y  ->  (
x  .x.  ( I `  X ) )  =  ( -u y  .x.  ( I `  X
) ) )
14 oveq1 6657 . . . . . . 7  |-  ( x  =  -u y  ->  (
x  .x.  X )  =  ( -u y  .x.  X ) )
1514fveq2d 6195 . . . . . 6  |-  ( x  =  -u y  ->  (
I `  ( x  .x.  X ) )  =  ( I `  ( -u y  .x.  X ) ) )
1613, 15eqeq12d 2637 . . . . 5  |-  ( x  =  -u y  ->  (
( x  .x.  (
I `  X )
)  =  ( I `
 ( x  .x.  X ) )  <->  ( -u y  .x.  ( I `  X
) )  =  ( I `  ( -u y  .x.  X ) ) ) )
17 oveq1 6657 . . . . . 6  |-  ( x  =  N  ->  (
x  .x.  ( I `  X ) )  =  ( N  .x.  (
I `  X )
) )
18 oveq1 6657 . . . . . . 7  |-  ( x  =  N  ->  (
x  .x.  X )  =  ( N  .x.  X ) )
1918fveq2d 6195 . . . . . 6  |-  ( x  =  N  ->  (
I `  ( x  .x.  X ) )  =  ( I `  ( N  .x.  X ) ) )
2017, 19eqeq12d 2637 . . . . 5  |-  ( x  =  N  ->  (
( x  .x.  (
I `  X )
)  =  ( I `
 ( x  .x.  X ) )  <->  ( N  .x.  ( I `  X
) )  =  ( I `  ( N 
.x.  X ) ) ) )
21 eqid 2622 . . . . . . . . 9  |-  ( 0g
`  G )  =  ( 0g `  G
)
22 mulginvcom.i . . . . . . . . 9  |-  I  =  ( invg `  G )
2321, 22grpinvid 17476 . . . . . . . 8  |-  ( G  e.  Grp  ->  (
I `  ( 0g `  G ) )  =  ( 0g `  G
) )
2423eqcomd 2628 . . . . . . 7  |-  ( G  e.  Grp  ->  ( 0g `  G )  =  ( I `  ( 0g `  G ) ) )
2524adantr 481 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( 0g `  G
)  =  ( I `
 ( 0g `  G ) ) )
26 mulginvcom.b . . . . . . . 8  |-  B  =  ( Base `  G
)
2726, 22grpinvcl 17467 . . . . . . 7  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( I `  X
)  e.  B )
28 mulginvcom.t . . . . . . . 8  |-  .x.  =  (.g
`  G )
2926, 21, 28mulg0 17546 . . . . . . 7  |-  ( ( I `  X )  e.  B  ->  (
0  .x.  ( I `  X ) )  =  ( 0g `  G
) )
3027, 29syl 17 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( 0  .x.  (
I `  X )
)  =  ( 0g
`  G ) )
3126, 21, 28mulg0 17546 . . . . . . . 8  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  G ) )
3231adantl 482 . . . . . . 7  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( 0  .x.  X
)  =  ( 0g
`  G ) )
3332fveq2d 6195 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( I `  (
0  .x.  X )
)  =  ( I `
 ( 0g `  G ) ) )
3425, 30, 333eqtr4d 2666 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( 0  .x.  (
I `  X )
)  =  ( I `
 ( 0  .x. 
X ) ) )
35 oveq2 6658 . . . . . . . . . 10  |-  ( ( y  .x.  ( I `
 X ) )  =  ( I `  ( y  .x.  X
) )  ->  (
( I `  X
) ( +g  `  G
) ( y  .x.  ( I `  X
) ) )  =  ( ( I `  X ) ( +g  `  G ) ( I `
 ( y  .x.  X ) ) ) )
3635adantl 482 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( ( I `
 X ) ( +g  `  G ) ( y  .x.  (
I `  X )
) )  =  ( ( I `  X
) ( +g  `  G
) ( I `  ( y  .x.  X
) ) ) )
37 grpmnd 17429 . . . . . . . . . . . . 13  |-  ( G  e.  Grp  ->  G  e.  Mnd )
38373ad2ant1 1082 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  G  e.  Mnd )
39 simp2 1062 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  y  e.  NN0 )
40273adant2 1080 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  (
I `  X )  e.  B )
41 eqid 2622 . . . . . . . . . . . . 13  |-  ( +g  `  G )  =  ( +g  `  G )
4226, 28, 41mulgnn0p1 17552 . . . . . . . . . . . 12  |-  ( ( G  e.  Mnd  /\  y  e.  NN0  /\  (
I `  X )  e.  B )  ->  (
( y  +  1 )  .x.  ( I `
 X ) )  =  ( ( y 
.x.  ( I `  X ) ) ( +g  `  G ) ( I `  X
) ) )
4338, 39, 40, 42syl3anc 1326 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  (
( y  +  1 )  .x.  ( I `
 X ) )  =  ( ( y 
.x.  ( I `  X ) ) ( +g  `  G ) ( I `  X
) ) )
44 simp1 1061 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  G  e.  Grp )
45 nn0z 11400 . . . . . . . . . . . . 13  |-  ( y  e.  NN0  ->  y  e.  ZZ )
46453ad2ant2 1083 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  y  e.  ZZ )
4726, 28, 41mulgaddcom 17564 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  (
I `  X )  e.  B )  ->  (
( y  .x.  (
I `  X )
) ( +g  `  G
) ( I `  X ) )  =  ( ( I `  X ) ( +g  `  G ) ( y 
.x.  ( I `  X ) ) ) )
4844, 46, 40, 47syl3anc 1326 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  (
( y  .x.  (
I `  X )
) ( +g  `  G
) ( I `  X ) )  =  ( ( I `  X ) ( +g  `  G ) ( y 
.x.  ( I `  X ) ) ) )
4943, 48eqtrd 2656 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  (
( y  +  1 )  .x.  ( I `
 X ) )  =  ( ( I `
 X ) ( +g  `  G ) ( y  .x.  (
I `  X )
) ) )
5049adantr 481 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( ( y  +  1 )  .x.  ( I `  X
) )  =  ( ( I `  X
) ( +g  `  G
) ( y  .x.  ( I `  X
) ) ) )
5126, 28, 41mulgnn0p1 17552 . . . . . . . . . . . . 13  |-  ( ( G  e.  Mnd  /\  y  e.  NN0  /\  X  e.  B )  ->  (
( y  +  1 )  .x.  X )  =  ( ( y 
.x.  X ) ( +g  `  G ) X ) )
5237, 51syl3an1 1359 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  (
( y  +  1 )  .x.  X )  =  ( ( y 
.x.  X ) ( +g  `  G ) X ) )
5352fveq2d 6195 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  (
I `  ( (
y  +  1 ) 
.x.  X ) )  =  ( I `  ( ( y  .x.  X ) ( +g  `  G ) X ) ) )
5426, 28mulgcl 17559 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  (
y  .x.  X )  e.  B )
5545, 54syl3an2 1360 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  (
y  .x.  X )  e.  B )
5626, 41, 22grpinvadd 17493 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( y  .x.  X
)  e.  B  /\  X  e.  B )  ->  ( I `  (
( y  .x.  X
) ( +g  `  G
) X ) )  =  ( ( I `
 X ) ( +g  `  G ) ( I `  (
y  .x.  X )
) ) )
5755, 56syld3an2 1373 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  (
I `  ( (
y  .x.  X )
( +g  `  G ) X ) )  =  ( ( I `  X ) ( +g  `  G ) ( I `
 ( y  .x.  X ) ) ) )
5853, 57eqtrd 2656 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  (
I `  ( (
y  +  1 ) 
.x.  X ) )  =  ( ( I `
 X ) ( +g  `  G ) ( I `  (
y  .x.  X )
) ) )
5958adantr 481 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( I `  ( ( y  +  1 )  .x.  X
) )  =  ( ( I `  X
) ( +g  `  G
) ( I `  ( y  .x.  X
) ) ) )
6036, 50, 593eqtr4d 2666 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( ( y  +  1 )  .x.  ( I `  X
) )  =  ( I `  ( ( y  +  1 ) 
.x.  X ) ) )
61603exp1 1283 . . . . . . 7  |-  ( G  e.  Grp  ->  (
y  e.  NN0  ->  ( X  e.  B  -> 
( ( y  .x.  ( I `  X
) )  =  ( I `  ( y 
.x.  X ) )  ->  ( ( y  +  1 )  .x.  ( I `  X
) )  =  ( I `  ( ( y  +  1 ) 
.x.  X ) ) ) ) ) )
6261com23 86 . . . . . 6  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  ( y  e.  NN0  ->  ( ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) )  -> 
( ( y  +  1 )  .x.  (
I `  X )
)  =  ( I `
 ( ( y  +  1 )  .x.  X ) ) ) ) ) )
6362imp 445 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( y  e.  NN0  ->  ( ( y  .x.  ( I `  X
) )  =  ( I `  ( y 
.x.  X ) )  ->  ( ( y  +  1 )  .x.  ( I `  X
) )  =  ( I `  ( ( y  +  1 ) 
.x.  X ) ) ) ) )
64 nnz 11399 . . . . . 6  |-  ( y  e.  NN  ->  y  e.  ZZ )
65273adant2 1080 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  (
I `  X )  e.  B )
6626, 28, 22mulgneg 17560 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  (
I `  X )  e.  B )  ->  ( -u y  .x.  ( I `
 X ) )  =  ( I `  ( y  .x.  (
I `  X )
) ) )
6765, 66syld3an3 1371 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  ( -u y  .x.  ( I `
 X ) )  =  ( I `  ( y  .x.  (
I `  X )
) ) )
6867adantr 481 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( -u y  .x.  ( I `  X
) )  =  ( I `  ( y 
.x.  ( I `  X ) ) ) )
6926, 28, 22mulgneg 17560 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  ( -u y  .x.  X )  =  ( I `  ( y  .x.  X
) ) )
7069adantr 481 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( -u y  .x.  X )  =  ( I `  ( y 
.x.  X ) ) )
71 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( y  .x.  ( I `  X
) )  =  ( I `  ( y 
.x.  X ) ) )
7270, 71eqtr4d 2659 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( -u y  .x.  X )  =  ( y  .x.  ( I `
 X ) ) )
7372fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( I `  ( -u y  .x.  X
) )  =  ( I `  ( y 
.x.  ( I `  X ) ) ) )
7468, 73eqtr4d 2659 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( -u y  .x.  ( I `  X
) )  =  ( I `  ( -u y  .x.  X ) ) )
75743exp1 1283 . . . . . . . 8  |-  ( G  e.  Grp  ->  (
y  e.  ZZ  ->  ( X  e.  B  -> 
( ( y  .x.  ( I `  X
) )  =  ( I `  ( y 
.x.  X ) )  ->  ( -u y  .x.  ( I `  X
) )  =  ( I `  ( -u y  .x.  X ) ) ) ) ) )
7675com23 86 . . . . . . 7  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  ( y  e.  ZZ  ->  ( ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) )  -> 
( -u y  .x.  (
I `  X )
)  =  ( I `
 ( -u y  .x.  X ) ) ) ) ) )
7776imp 445 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( y  e.  ZZ  ->  ( ( y  .x.  ( I `  X
) )  =  ( I `  ( y 
.x.  X ) )  ->  ( -u y  .x.  ( I `  X
) )  =  ( I `  ( -u y  .x.  X ) ) ) ) )
7864, 77syl5 34 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( y  e.  NN  ->  ( ( y  .x.  ( I `  X
) )  =  ( I `  ( y 
.x.  X ) )  ->  ( -u y  .x.  ( I `  X
) )  =  ( I `  ( -u y  .x.  X ) ) ) ) )
794, 8, 12, 16, 20, 34, 63, 78zindd 11478 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N  e.  ZZ  ->  ( N  .x.  (
I `  X )
)  =  ( I `
 ( N  .x.  X ) ) ) )
8079ex 450 . . 3  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  ( N  e.  ZZ  ->  ( N  .x.  ( I `
 X ) )  =  ( I `  ( N  .x.  X ) ) ) ) )
8180com23 86 . 2  |-  ( G  e.  Grp  ->  ( N  e.  ZZ  ->  ( X  e.  B  -> 
( N  .x.  (
I `  X )
)  =  ( I `
 ( N  .x.  X ) ) ) ) )
82813imp 1256 1  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  ( I `  X ) )  =  ( I `  ( N  .x.  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   -ucneg 10267   NNcn 11020   NN0cn0 11292   ZZcz 11377   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Mndcmnd 17294   Grpcgrp 17422   invgcminusg 17423  .gcmg 17540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mulg 17541
This theorem is referenced by:  mulginvinv  17566
  Copyright terms: Public domain W3C validator