MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgaddcom Structured version   Visualization version   Unicode version

Theorem mulgaddcom 17564
Description: The group multiple operator commutes with the group operation. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
Hypotheses
Ref Expression
mulgaddcom.b  |-  B  =  ( Base `  G
)
mulgaddcom.t  |-  .x.  =  (.g
`  G )
mulgaddcom.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgaddcom  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  (
( N  .x.  X
)  .+  X )  =  ( X  .+  ( N  .x.  X ) ) )

Proof of Theorem mulgaddcom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6657 . . . . . . 7  |-  ( x  =  0  ->  (
x  .x.  X )  =  ( 0  .x. 
X ) )
21oveq1d 6665 . . . . . 6  |-  ( x  =  0  ->  (
( x  .x.  X
)  .+  X )  =  ( ( 0 
.x.  X )  .+  X ) )
31oveq2d 6666 . . . . . 6  |-  ( x  =  0  ->  ( X  .+  ( x  .x.  X ) )  =  ( X  .+  (
0  .x.  X )
) )
42, 3eqeq12d 2637 . . . . 5  |-  ( x  =  0  ->  (
( ( x  .x.  X )  .+  X
)  =  ( X 
.+  ( x  .x.  X ) )  <->  ( (
0  .x.  X )  .+  X )  =  ( X  .+  ( 0 
.x.  X ) ) ) )
5 oveq1 6657 . . . . . . 7  |-  ( x  =  y  ->  (
x  .x.  X )  =  ( y  .x.  X ) )
65oveq1d 6665 . . . . . 6  |-  ( x  =  y  ->  (
( x  .x.  X
)  .+  X )  =  ( ( y 
.x.  X )  .+  X ) )
75oveq2d 6666 . . . . . 6  |-  ( x  =  y  ->  ( X  .+  ( x  .x.  X ) )  =  ( X  .+  (
y  .x.  X )
) )
86, 7eqeq12d 2637 . . . . 5  |-  ( x  =  y  ->  (
( ( x  .x.  X )  .+  X
)  =  ( X 
.+  ( x  .x.  X ) )  <->  ( (
y  .x.  X )  .+  X )  =  ( X  .+  ( y 
.x.  X ) ) ) )
9 oveq1 6657 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
x  .x.  X )  =  ( ( y  +  1 )  .x.  X ) )
109oveq1d 6665 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
( x  .x.  X
)  .+  X )  =  ( ( ( y  +  1 ) 
.x.  X )  .+  X ) )
119oveq2d 6666 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  ( X  .+  ( x  .x.  X ) )  =  ( X  .+  (
( y  +  1 )  .x.  X ) ) )
1210, 11eqeq12d 2637 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
( ( x  .x.  X )  .+  X
)  =  ( X 
.+  ( x  .x.  X ) )  <->  ( (
( y  +  1 )  .x.  X ) 
.+  X )  =  ( X  .+  (
( y  +  1 )  .x.  X ) ) ) )
13 oveq1 6657 . . . . . . 7  |-  ( x  =  -u y  ->  (
x  .x.  X )  =  ( -u y  .x.  X ) )
1413oveq1d 6665 . . . . . 6  |-  ( x  =  -u y  ->  (
( x  .x.  X
)  .+  X )  =  ( ( -u y  .x.  X )  .+  X ) )
1513oveq2d 6666 . . . . . 6  |-  ( x  =  -u y  ->  ( X  .+  ( x  .x.  X ) )  =  ( X  .+  ( -u y  .x.  X ) ) )
1614, 15eqeq12d 2637 . . . . 5  |-  ( x  =  -u y  ->  (
( ( x  .x.  X )  .+  X
)  =  ( X 
.+  ( x  .x.  X ) )  <->  ( ( -u y  .x.  X ) 
.+  X )  =  ( X  .+  ( -u y  .x.  X ) ) ) )
17 oveq1 6657 . . . . . . 7  |-  ( x  =  N  ->  (
x  .x.  X )  =  ( N  .x.  X ) )
1817oveq1d 6665 . . . . . 6  |-  ( x  =  N  ->  (
( x  .x.  X
)  .+  X )  =  ( ( N 
.x.  X )  .+  X ) )
1917oveq2d 6666 . . . . . 6  |-  ( x  =  N  ->  ( X  .+  ( x  .x.  X ) )  =  ( X  .+  ( N  .x.  X ) ) )
2018, 19eqeq12d 2637 . . . . 5  |-  ( x  =  N  ->  (
( ( x  .x.  X )  .+  X
)  =  ( X 
.+  ( x  .x.  X ) )  <->  ( ( N  .x.  X )  .+  X )  =  ( X  .+  ( N 
.x.  X ) ) ) )
21 mulgaddcom.b . . . . . . 7  |-  B  =  ( Base `  G
)
22 mulgaddcom.p . . . . . . 7  |-  .+  =  ( +g  `  G )
23 eqid 2622 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
2421, 22, 23grplid 17452 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( 0g `  G )  .+  X
)  =  X )
25 mulgaddcom.t . . . . . . . . 9  |-  .x.  =  (.g
`  G )
2621, 23, 25mulg0 17546 . . . . . . . 8  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  G ) )
2726adantl 482 . . . . . . 7  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( 0  .x.  X
)  =  ( 0g
`  G ) )
2827oveq1d 6665 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( 0  .x. 
X )  .+  X
)  =  ( ( 0g `  G ) 
.+  X ) )
2927oveq2d 6666 . . . . . . 7  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  (
0  .x.  X )
)  =  ( X 
.+  ( 0g `  G ) ) )
3021, 22, 23grprid 17453 . . . . . . 7  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  ( 0g `  G ) )  =  X )
3129, 30eqtrd 2656 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  (
0  .x.  X )
)  =  X )
3224, 28, 313eqtr4d 2666 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( 0  .x. 
X )  .+  X
)  =  ( X 
.+  ( 0  .x. 
X ) ) )
33 nn0z 11400 . . . . . . . . . 10  |-  ( y  e.  NN0  ->  y  e.  ZZ )
34 simp1 1061 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  ZZ )  ->  G  e.  Grp )
35 simp2 1062 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  ZZ )  ->  X  e.  B )
36 simp3 1063 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  ZZ )  ->  y  e.  ZZ )
3734, 36, 353jca 1242 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  ZZ )  ->  ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )
)
3821, 25mulgcl 17559 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  (
y  .x.  X )  e.  B )
3937, 38syl 17 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  ZZ )  ->  ( y  .x.  X
)  e.  B )
4021, 22grpass 17431 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  ( y  .x.  X
)  e.  B  /\  X  e.  B )
)  ->  ( ( X  .+  ( y  .x.  X ) )  .+  X )  =  ( X  .+  ( ( y  .x.  X ) 
.+  X ) ) )
4134, 35, 39, 35, 40syl13anc 1328 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  ZZ )  ->  ( ( X  .+  ( y  .x.  X
) )  .+  X
)  =  ( X 
.+  ( ( y 
.x.  X )  .+  X ) ) )
4233, 41syl3an3 1361 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  -> 
( ( X  .+  ( y  .x.  X
) )  .+  X
)  =  ( X 
.+  ( ( y 
.x.  X )  .+  X ) ) )
4342adantr 481 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( X 
.+  ( y  .x.  X ) )  .+  X )  =  ( X  .+  ( ( y  .x.  X ) 
.+  X ) ) )
44 grpmnd 17429 . . . . . . . . . . . . . 14  |-  ( G  e.  Grp  ->  G  e.  Mnd )
45443ad2ant1 1082 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  ->  G  e.  Mnd )
46 simp3 1063 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  -> 
y  e.  NN0 )
47 simp2 1062 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  ->  X  e.  B )
4845, 46, 473jca 1242 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  -> 
( G  e.  Mnd  /\  y  e.  NN0  /\  X  e.  B )
)
4921, 25, 22mulgnn0p1 17552 . . . . . . . . . . . 12  |-  ( ( G  e.  Mnd  /\  y  e.  NN0  /\  X  e.  B )  ->  (
( y  +  1 )  .x.  X )  =  ( ( y 
.x.  X )  .+  X ) )
5048, 49syl 17 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  -> 
( ( y  +  1 )  .x.  X
)  =  ( ( y  .x.  X ) 
.+  X ) )
5150eqeq1d 2624 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  -> 
( ( ( y  +  1 )  .x.  X )  =  ( X  .+  ( y 
.x.  X ) )  <-> 
( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) ) )
5251biimpar 502 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( y  +  1 )  .x.  X )  =  ( X  .+  ( y 
.x.  X ) ) )
5352oveq1d 6665 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( ( y  +  1 ) 
.x.  X )  .+  X )  =  ( ( X  .+  (
y  .x.  X )
)  .+  X )
)
5450oveq2d 6666 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  -> 
( X  .+  (
( y  +  1 )  .x.  X ) )  =  ( X 
.+  ( ( y 
.x.  X )  .+  X ) ) )
5554adantr 481 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( X  .+  ( ( y  +  1 )  .x.  X
) )  =  ( X  .+  ( ( y  .x.  X ) 
.+  X ) ) )
5643, 53, 553eqtr4d 2666 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( ( y  +  1 ) 
.x.  X )  .+  X )  =  ( X  .+  ( ( y  +  1 ) 
.x.  X ) ) )
5756ex 450 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  -> 
( ( ( y 
.x.  X )  .+  X )  =  ( X  .+  ( y 
.x.  X ) )  ->  ( ( ( y  +  1 ) 
.x.  X )  .+  X )  =  ( X  .+  ( ( y  +  1 ) 
.x.  X ) ) ) )
58573expia 1267 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( y  e.  NN0  ->  ( ( ( y 
.x.  X )  .+  X )  =  ( X  .+  ( y 
.x.  X ) )  ->  ( ( ( y  +  1 ) 
.x.  X )  .+  X )  =  ( X  .+  ( ( y  +  1 ) 
.x.  X ) ) ) ) )
59 nnz 11399 . . . . . 6  |-  ( y  e.  NN  ->  y  e.  ZZ )
6021, 25, 22mulgaddcomlem 17563 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( -u y  .x.  X )  .+  X )  =  ( X  .+  ( -u y  .x.  X ) ) )
6160ex 450 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  (
( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) )  -> 
( ( -u y  .x.  X )  .+  X
)  =  ( X 
.+  ( -u y  .x.  X ) ) ) )
62613exp 1264 . . . . . . . 8  |-  ( G  e.  Grp  ->  (
y  e.  ZZ  ->  ( X  e.  B  -> 
( ( ( y 
.x.  X )  .+  X )  =  ( X  .+  ( y 
.x.  X ) )  ->  ( ( -u y  .x.  X )  .+  X )  =  ( X  .+  ( -u y  .x.  X ) ) ) ) ) )
6362com23 86 . . . . . . 7  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  ( y  e.  ZZ  ->  ( ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) )  -> 
( ( -u y  .x.  X )  .+  X
)  =  ( X 
.+  ( -u y  .x.  X ) ) ) ) ) )
6463imp 445 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( y  e.  ZZ  ->  ( ( ( y 
.x.  X )  .+  X )  =  ( X  .+  ( y 
.x.  X ) )  ->  ( ( -u y  .x.  X )  .+  X )  =  ( X  .+  ( -u y  .x.  X ) ) ) ) )
6559, 64syl5 34 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( y  e.  NN  ->  ( ( ( y 
.x.  X )  .+  X )  =  ( X  .+  ( y 
.x.  X ) )  ->  ( ( -u y  .x.  X )  .+  X )  =  ( X  .+  ( -u y  .x.  X ) ) ) ) )
664, 8, 12, 16, 20, 32, 58, 65zindd 11478 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N  e.  ZZ  ->  ( ( N  .x.  X )  .+  X
)  =  ( X 
.+  ( N  .x.  X ) ) ) )
6766ex 450 . . 3  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  ( N  e.  ZZ  ->  ( ( N  .x.  X
)  .+  X )  =  ( X  .+  ( N  .x.  X ) ) ) ) )
6867com23 86 . 2  |-  ( G  e.  Grp  ->  ( N  e.  ZZ  ->  ( X  e.  B  -> 
( ( N  .x.  X )  .+  X
)  =  ( X 
.+  ( N  .x.  X ) ) ) ) )
69683imp 1256 1  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  (
( N  .x.  X
)  .+  X )  =  ( X  .+  ( N  .x.  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   -ucneg 10267   NNcn 11020   NN0cn0 11292   ZZcz 11377   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Mndcmnd 17294   Grpcgrp 17422  .gcmg 17540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mulg 17541
This theorem is referenced by:  mulginvcom  17565
  Copyright terms: Public domain W3C validator