MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcd0id Structured version   Visualization version   Unicode version

Theorem gcd0id 15240
Description: The gcd of 0 and an integer is the integer's absolute value. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
gcd0id  |-  ( N  e.  ZZ  ->  (
0  gcd  N )  =  ( abs `  N
) )

Proof of Theorem gcd0id
StepHypRef Expression
1 gcd0val 15219 . . . 4  |-  ( 0  gcd  0 )  =  0
2 oveq2 6658 . . . 4  |-  ( N  =  0  ->  (
0  gcd  N )  =  ( 0  gcd  0 ) )
3 fveq2 6191 . . . . 5  |-  ( N  =  0  ->  ( abs `  N )  =  ( abs `  0
) )
4 abs0 14025 . . . . 5  |-  ( abs `  0 )  =  0
53, 4syl6eq 2672 . . . 4  |-  ( N  =  0  ->  ( abs `  N )  =  0 )
61, 2, 53eqtr4a 2682 . . 3  |-  ( N  =  0  ->  (
0  gcd  N )  =  ( abs `  N
) )
76adantl 482 . 2  |-  ( ( N  e.  ZZ  /\  N  =  0 )  ->  ( 0  gcd 
N )  =  ( abs `  N ) )
8 0z 11388 . . . . . . 7  |-  0  e.  ZZ
9 gcddvds 15225 . . . . . . 7  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( 0  gcd 
N )  ||  0  /\  ( 0  gcd  N
)  ||  N )
)
108, 9mpan 706 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( 0  gcd  N
)  ||  0  /\  ( 0  gcd  N
)  ||  N )
)
1110simprd 479 . . . . 5  |-  ( N  e.  ZZ  ->  (
0  gcd  N )  ||  N )
1211adantr 481 . . . 4  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( 0  gcd  N
)  ||  N )
13 gcdcl 15228 . . . . . . . 8  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  gcd  N
)  e.  NN0 )
148, 13mpan 706 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
0  gcd  N )  e.  NN0 )
1514nn0zd 11480 . . . . . 6  |-  ( N  e.  ZZ  ->  (
0  gcd  N )  e.  ZZ )
16 dvdsleabs 15033 . . . . . 6  |-  ( ( ( 0  gcd  N
)  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( 0  gcd  N
)  ||  N  ->  ( 0  gcd  N )  <_  ( abs `  N
) ) )
1715, 16syl3an1 1359 . . . . 5  |-  ( ( N  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( 0  gcd  N
)  ||  N  ->  ( 0  gcd  N )  <_  ( abs `  N
) ) )
18173anidm12 1383 . . . 4  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( ( 0  gcd 
N )  ||  N  ->  ( 0  gcd  N
)  <_  ( abs `  N ) ) )
1912, 18mpd 15 . . 3  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( 0  gcd  N
)  <_  ( abs `  N ) )
20 zabscl 14053 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( abs `  N )  e.  ZZ )
21 dvds0 14997 . . . . . . 7  |-  ( ( abs `  N )  e.  ZZ  ->  ( abs `  N )  ||  0 )
2220, 21syl 17 . . . . . 6  |-  ( N  e.  ZZ  ->  ( abs `  N )  ||  0 )
23 iddvds 14995 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  ||  N )
24 absdvdsb 15000 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  ||  N  <->  ( abs `  N ) 
||  N ) )
2524anidms 677 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( N  ||  N  <->  ( abs `  N )  ||  N
) )
2623, 25mpbid 222 . . . . . 6  |-  ( N  e.  ZZ  ->  ( abs `  N )  ||  N )
2722, 26jca 554 . . . . 5  |-  ( N  e.  ZZ  ->  (
( abs `  N
)  ||  0  /\  ( abs `  N ) 
||  N ) )
2827adantr 481 . . . 4  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( ( abs `  N
)  ||  0  /\  ( abs `  N ) 
||  N ) )
29 eqid 2622 . . . . . . . 8  |-  0  =  0
3029biantrur 527 . . . . . . 7  |-  ( N  =  0  <->  ( 0  =  0  /\  N  =  0 ) )
3130necon3abii 2840 . . . . . 6  |-  ( N  =/=  0  <->  -.  (
0  =  0  /\  N  =  0 ) )
32 dvdslegcd 15226 . . . . . . . . 9  |-  ( ( ( ( abs `  N
)  e.  ZZ  /\  0  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( 0  =  0  /\  N  =  0 ) )  ->  (
( ( abs `  N
)  ||  0  /\  ( abs `  N ) 
||  N )  -> 
( abs `  N
)  <_  ( 0  gcd  N ) ) )
3332ex 450 . . . . . . . 8  |-  ( ( ( abs `  N
)  e.  ZZ  /\  0  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( 0  =  0  /\  N  =  0 )  ->  ( (
( abs `  N
)  ||  0  /\  ( abs `  N ) 
||  N )  -> 
( abs `  N
)  <_  ( 0  gcd  N ) ) ) )
348, 33mp3an2 1412 . . . . . . 7  |-  ( ( ( abs `  N
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( 0  =  0  /\  N  =  0 )  -> 
( ( ( abs `  N )  ||  0  /\  ( abs `  N
)  ||  N )  ->  ( abs `  N
)  <_  ( 0  gcd  N ) ) ) )
3520, 34mpancom 703 . . . . . 6  |-  ( N  e.  ZZ  ->  ( -.  ( 0  =  0  /\  N  =  0 )  ->  ( (
( abs `  N
)  ||  0  /\  ( abs `  N ) 
||  N )  -> 
( abs `  N
)  <_  ( 0  gcd  N ) ) ) )
3631, 35syl5bi 232 . . . . 5  |-  ( N  e.  ZZ  ->  ( N  =/=  0  ->  (
( ( abs `  N
)  ||  0  /\  ( abs `  N ) 
||  N )  -> 
( abs `  N
)  <_  ( 0  gcd  N ) ) ) )
3736imp 445 . . . 4  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( ( ( abs `  N )  ||  0  /\  ( abs `  N
)  ||  N )  ->  ( abs `  N
)  <_  ( 0  gcd  N ) ) )
3828, 37mpd 15 . . 3  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  <_  ( 0  gcd  N ) )
3915zred 11482 . . . . 5  |-  ( N  e.  ZZ  ->  (
0  gcd  N )  e.  RR )
4020zred 11482 . . . . 5  |-  ( N  e.  ZZ  ->  ( abs `  N )  e.  RR )
4139, 40letri3d 10179 . . . 4  |-  ( N  e.  ZZ  ->  (
( 0  gcd  N
)  =  ( abs `  N )  <->  ( (
0  gcd  N )  <_  ( abs `  N
)  /\  ( abs `  N )  <_  (
0  gcd  N )
) ) )
4241adantr 481 . . 3  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( ( 0  gcd 
N )  =  ( abs `  N )  <-> 
( ( 0  gcd 
N )  <_  ( abs `  N )  /\  ( abs `  N )  <_  ( 0  gcd 
N ) ) ) )
4319, 38, 42mpbir2and 957 . 2  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( 0  gcd  N
)  =  ( abs `  N ) )
447, 43pm2.61dane 2881 1  |-  ( N  e.  ZZ  ->  (
0  gcd  N )  =  ( abs `  N
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   0cc0 9936    <_ cle 10075   NN0cn0 11292   ZZcz 11377   abscabs 13974    || cdvds 14983    gcd cgcd 15216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217
This theorem is referenced by:  gcdid0  15241  nn0gcdsq  15460  dfphi2  15479  qqh0  30028
  Copyright terms: Public domain W3C validator