| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0srg | Structured version Visualization version Unicode version | ||
| Description: The nonnegative integers form a semiring (commutative by subcmn 18242). (Contributed by Thierry Arnoux, 1-May-2018.) |
| Ref | Expression |
|---|---|
| nn0srg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnring 19768 |
. . . 4
| |
| 2 | ringcmn 18581 |
. . . 4
| |
| 3 | 1, 2 | ax-mp 5 |
. . 3
|
| 4 | nn0subm 19801 |
. . 3
| |
| 5 | eqid 2622 |
. . . 4
| |
| 6 | 5 | submcmn 18243 |
. . 3
|
| 7 | 3, 4, 6 | mp2an 708 |
. 2
|
| 8 | nn0ex 11298 |
. . . 4
| |
| 9 | eqid 2622 |
. . . . 5
| |
| 10 | 5, 9 | mgpress 18500 |
. . . 4
|
| 11 | 3, 8, 10 | mp2an 708 |
. . 3
|
| 12 | nn0sscn 11297 |
. . . . 5
| |
| 13 | 1nn0 11308 |
. . . . 5
| |
| 14 | nn0mulcl 11329 |
. . . . . 6
| |
| 15 | 14 | rgen2a 2977 |
. . . . 5
|
| 16 | 9 | ringmgp 18553 |
. . . . . . 7
|
| 17 | 1, 16 | ax-mp 5 |
. . . . . 6
|
| 18 | cnfldbas 19750 |
. . . . . . . 8
| |
| 19 | 9, 18 | mgpbas 18495 |
. . . . . . 7
|
| 20 | cnfld1 19771 |
. . . . . . . 8
| |
| 21 | 9, 20 | ringidval 18503 |
. . . . . . 7
|
| 22 | cnfldmul 19752 |
. . . . . . . 8
| |
| 23 | 9, 22 | mgpplusg 18493 |
. . . . . . 7
|
| 24 | 19, 21, 23 | issubm 17347 |
. . . . . 6
|
| 25 | 17, 24 | ax-mp 5 |
. . . . 5
|
| 26 | 12, 13, 15, 25 | mpbir3an 1244 |
. . . 4
|
| 27 | eqid 2622 |
. . . . 5
| |
| 28 | 27 | submmnd 17354 |
. . . 4
|
| 29 | 26, 28 | ax-mp 5 |
. . 3
|
| 30 | 11, 29 | eqeltrri 2698 |
. 2
|
| 31 | simpl 473 |
. . . . . . . 8
| |
| 32 | 31 | nn0cnd 11353 |
. . . . . . 7
|
| 33 | simprl 794 |
. . . . . . . 8
| |
| 34 | 33 | nn0cnd 11353 |
. . . . . . 7
|
| 35 | simprr 796 |
. . . . . . . 8
| |
| 36 | 35 | nn0cnd 11353 |
. . . . . . 7
|
| 37 | 32, 34, 36 | adddid 10064 |
. . . . . 6
|
| 38 | 32, 34, 36 | adddird 10065 |
. . . . . 6
|
| 39 | 37, 38 | jca 554 |
. . . . 5
|
| 40 | 39 | ralrimivva 2971 |
. . . 4
|
| 41 | nn0cn 11302 |
. . . . 5
| |
| 42 | 41 | mul02d 10234 |
. . . 4
|
| 43 | 41 | mul01d 10235 |
. . . 4
|
| 44 | 40, 42, 43 | jca32 558 |
. . 3
|
| 45 | 44 | rgen 2922 |
. 2
|
| 46 | 5, 18 | ressbas2 15931 |
. . . 4
|
| 47 | 12, 46 | ax-mp 5 |
. . 3
|
| 48 | eqid 2622 |
. . 3
| |
| 49 | cnfldadd 19751 |
. . . . 5
| |
| 50 | 5, 49 | ressplusg 15993 |
. . . 4
|
| 51 | 8, 50 | ax-mp 5 |
. . 3
|
| 52 | 5, 22 | ressmulr 16006 |
. . . 4
|
| 53 | 8, 52 | ax-mp 5 |
. . 3
|
| 54 | ringmnd 18556 |
. . . . 5
| |
| 55 | 1, 54 | ax-mp 5 |
. . . 4
|
| 56 | 0nn0 11307 |
. . . 4
| |
| 57 | cnfld0 19770 |
. . . . 5
| |
| 58 | 5, 18, 57 | ress0g 17319 |
. . . 4
|
| 59 | 55, 56, 12, 58 | mp3an 1424 |
. . 3
|
| 60 | 47, 48, 51, 53, 59 | issrg 18507 |
. 2
|
| 61 | 7, 30, 45, 60 | mpbir3an 1244 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-addf 10015 ax-mulf 10016 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-grp 17425 df-minusg 17426 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-srg 18506 df-ring 18549 df-cring 18550 df-cnfld 19747 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |