MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rge0srg Structured version   Visualization version   Unicode version

Theorem rge0srg 19817
Description: The nonnegative real numbers form a semiring (commutative by subcmn 18242). (Contributed by Thierry Arnoux, 6-Sep-2018.)
Assertion
Ref Expression
rge0srg  |-  (flds  ( 0 [,) +oo ) )  e. SRing

Proof of Theorem rge0srg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnring 19768 . . . 4  |-fld  e.  Ring
2 ringcmn 18581 . . . 4  |-  (fld  e.  Ring  ->fld  e. CMnd )
31, 2ax-mp 5 . . 3  |-fld  e. CMnd
4 rege0subm 19802 . . 3  |-  ( 0 [,) +oo )  e.  (SubMnd ` fld )
5 eqid 2622 . . . 4  |-  (flds  ( 0 [,) +oo ) )  =  (flds  ( 0 [,) +oo ) )
65submcmn 18243 . . 3  |-  ( (fld  e. CMnd  /\  ( 0 [,) +oo )  e.  (SubMnd ` fld ) )  ->  (flds  ( 0 [,) +oo ) )  e. CMnd )
73, 4, 6mp2an 708 . 2  |-  (flds  ( 0 [,) +oo ) )  e. CMnd
8 rge0ssre 12280 . . . . 5  |-  ( 0 [,) +oo )  C_  RR
9 ax-resscn 9993 . . . . 5  |-  RR  C_  CC
108, 9sstri 3612 . . . 4  |-  ( 0 [,) +oo )  C_  CC
11 1re 10039 . . . . 5  |-  1  e.  RR
12 0le1 10551 . . . . 5  |-  0  <_  1
13 ltpnf 11954 . . . . . 6  |-  ( 1  e.  RR  ->  1  < +oo )
1411, 13ax-mp 5 . . . . 5  |-  1  < +oo
15 0re 10040 . . . . . 6  |-  0  e.  RR
16 pnfxr 10092 . . . . . 6  |- +oo  e.  RR*
17 elico2 12237 . . . . . 6  |-  ( ( 0  e.  RR  /\ +oo  e.  RR* )  ->  (
1  e.  ( 0 [,) +oo )  <->  ( 1  e.  RR  /\  0  <_  1  /\  1  < +oo ) ) )
1815, 16, 17mp2an 708 . . . . 5  |-  ( 1  e.  ( 0 [,) +oo )  <->  ( 1  e.  RR  /\  0  <_ 
1  /\  1  < +oo ) )
1911, 12, 14, 18mpbir3an 1244 . . . 4  |-  1  e.  ( 0 [,) +oo )
20 ge0mulcl 12285 . . . . 5  |-  ( ( x  e.  ( 0 [,) +oo )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( x  x.  y )  e.  ( 0 [,) +oo )
)
2120rgen2a 2977 . . . 4  |-  A. x  e.  ( 0 [,) +oo ) A. y  e.  ( 0 [,) +oo )
( x  x.  y
)  e.  ( 0 [,) +oo )
22 eqid 2622 . . . . . 6  |-  (mulGrp ` fld )  =  (mulGrp ` fld )
2322ringmgp 18553 . . . . 5  |-  (fld  e.  Ring  -> 
(mulGrp ` fld )  e.  Mnd )
24 cnfldbas 19750 . . . . . . 7  |-  CC  =  ( Base ` fld )
2522, 24mgpbas 18495 . . . . . 6  |-  CC  =  ( Base `  (mulGrp ` fld ) )
26 cnfld1 19771 . . . . . . 7  |-  1  =  ( 1r ` fld )
2722, 26ringidval 18503 . . . . . 6  |-  1  =  ( 0g `  (mulGrp ` fld ) )
28 cnfldmul 19752 . . . . . . 7  |-  x.  =  ( .r ` fld )
2922, 28mgpplusg 18493 . . . . . 6  |-  x.  =  ( +g  `  (mulGrp ` fld )
)
3025, 27, 29issubm 17347 . . . . 5  |-  ( (mulGrp ` fld )  e.  Mnd  ->  (
( 0 [,) +oo )  e.  (SubMnd `  (mulGrp ` fld ) )  <->  ( ( 0 [,) +oo )  C_  CC  /\  1  e.  ( 0 [,) +oo )  /\  A. x  e.  ( 0 [,) +oo ) A. y  e.  (
0 [,) +oo )
( x  x.  y
)  e.  ( 0 [,) +oo ) ) ) )
311, 23, 30mp2b 10 . . . 4  |-  ( ( 0 [,) +oo )  e.  (SubMnd `  (mulGrp ` fld ) )  <->  ( (
0 [,) +oo )  C_  CC  /\  1  e.  ( 0 [,) +oo )  /\  A. x  e.  ( 0 [,) +oo ) A. y  e.  ( 0 [,) +oo )
( x  x.  y
)  e.  ( 0 [,) +oo ) ) )
3210, 19, 21, 31mpbir3an 1244 . . 3  |-  ( 0 [,) +oo )  e.  (SubMnd `  (mulGrp ` fld ) )
33 eqid 2622 . . . 4  |-  ( (mulGrp ` fld )s  ( 0 [,) +oo ) )  =  ( (mulGrp ` fld )s  ( 0 [,) +oo ) )
3433submmnd 17354 . . 3  |-  ( ( 0 [,) +oo )  e.  (SubMnd `  (mulGrp ` fld ) )  ->  (
(mulGrp ` fld )s  ( 0 [,) +oo ) )  e.  Mnd )
3532, 34ax-mp 5 . 2  |-  ( (mulGrp ` fld )s  ( 0 [,) +oo ) )  e.  Mnd
36 simpll 790 . . . . . . . . 9  |-  ( ( ( x  e.  ( 0 [,) +oo )  /\  y  e.  (
0 [,) +oo )
)  /\  z  e.  ( 0 [,) +oo ) )  ->  x  e.  ( 0 [,) +oo ) )
3710, 36sseldi 3601 . . . . . . . 8  |-  ( ( ( x  e.  ( 0 [,) +oo )  /\  y  e.  (
0 [,) +oo )
)  /\  z  e.  ( 0 [,) +oo ) )  ->  x  e.  CC )
38 simplr 792 . . . . . . . . 9  |-  ( ( ( x  e.  ( 0 [,) +oo )  /\  y  e.  (
0 [,) +oo )
)  /\  z  e.  ( 0 [,) +oo ) )  ->  y  e.  ( 0 [,) +oo ) )
3910, 38sseldi 3601 . . . . . . . 8  |-  ( ( ( x  e.  ( 0 [,) +oo )  /\  y  e.  (
0 [,) +oo )
)  /\  z  e.  ( 0 [,) +oo ) )  ->  y  e.  CC )
40 simpr 477 . . . . . . . . 9  |-  ( ( ( x  e.  ( 0 [,) +oo )  /\  y  e.  (
0 [,) +oo )
)  /\  z  e.  ( 0 [,) +oo ) )  ->  z  e.  ( 0 [,) +oo ) )
4110, 40sseldi 3601 . . . . . . . 8  |-  ( ( ( x  e.  ( 0 [,) +oo )  /\  y  e.  (
0 [,) +oo )
)  /\  z  e.  ( 0 [,) +oo ) )  ->  z  e.  CC )
4237, 39, 41adddid 10064 . . . . . . 7  |-  ( ( ( x  e.  ( 0 [,) +oo )  /\  y  e.  (
0 [,) +oo )
)  /\  z  e.  ( 0 [,) +oo ) )  ->  (
x  x.  ( y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z
) ) )
4337, 39, 41adddird 10065 . . . . . . 7  |-  ( ( ( x  e.  ( 0 [,) +oo )  /\  y  e.  (
0 [,) +oo )
)  /\  z  e.  ( 0 [,) +oo ) )  ->  (
( x  +  y )  x.  z )  =  ( ( x  x.  z )  +  ( y  x.  z
) ) )
4442, 43jca 554 . . . . . 6  |-  ( ( ( x  e.  ( 0 [,) +oo )  /\  y  e.  (
0 [,) +oo )
)  /\  z  e.  ( 0 [,) +oo ) )  ->  (
( x  x.  (
y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z ) )  /\  ( ( x  +  y )  x.  z
)  =  ( ( x  x.  z )  +  ( y  x.  z ) ) ) )
4544ralrimiva 2966 . . . . 5  |-  ( ( x  e.  ( 0 [,) +oo )  /\  y  e.  ( 0 [,) +oo ) )  ->  A. z  e.  ( 0 [,) +oo )
( ( x  x.  ( y  +  z ) )  =  ( ( x  x.  y
)  +  ( x  x.  z ) )  /\  ( ( x  +  y )  x.  z )  =  ( ( x  x.  z
)  +  ( y  x.  z ) ) ) )
4645ralrimiva 2966 . . . 4  |-  ( x  e.  ( 0 [,) +oo )  ->  A. y  e.  ( 0 [,) +oo ) A. z  e.  ( 0 [,) +oo )
( ( x  x.  ( y  +  z ) )  =  ( ( x  x.  y
)  +  ( x  x.  z ) )  /\  ( ( x  +  y )  x.  z )  =  ( ( x  x.  z
)  +  ( y  x.  z ) ) ) )
4710sseli 3599 . . . . 5  |-  ( x  e.  ( 0 [,) +oo )  ->  x  e.  CC )
4847mul02d 10234 . . . 4  |-  ( x  e.  ( 0 [,) +oo )  ->  ( 0  x.  x )  =  0 )
4947mul01d 10235 . . . 4  |-  ( x  e.  ( 0 [,) +oo )  ->  ( x  x.  0 )  =  0 )
5046, 48, 49jca32 558 . . 3  |-  ( x  e.  ( 0 [,) +oo )  ->  ( A. y  e.  ( 0 [,) +oo ) A. z  e.  ( 0 [,) +oo ) ( ( x  x.  (
y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z ) )  /\  ( ( x  +  y )  x.  z
)  =  ( ( x  x.  z )  +  ( y  x.  z ) ) )  /\  ( ( 0  x.  x )  =  0  /\  ( x  x.  0 )  =  0 ) ) )
5150rgen 2922 . 2  |-  A. x  e.  ( 0 [,) +oo ) ( A. y  e.  ( 0 [,) +oo ) A. z  e.  ( 0 [,) +oo )
( ( x  x.  ( y  +  z ) )  =  ( ( x  x.  y
)  +  ( x  x.  z ) )  /\  ( ( x  +  y )  x.  z )  =  ( ( x  x.  z
)  +  ( y  x.  z ) ) )  /\  ( ( 0  x.  x )  =  0  /\  (
x  x.  0 )  =  0 ) )
525, 24ressbas2 15931 . . . 4  |-  ( ( 0 [,) +oo )  C_  CC  ->  ( 0 [,) +oo )  =  ( Base `  (flds  ( 0 [,) +oo ) ) ) )
5310, 52ax-mp 5 . . 3  |-  ( 0 [,) +oo )  =  ( Base `  (flds  ( 0 [,) +oo ) ) )
54 cnfldex 19749 . . . 4  |-fld  e.  _V
55 ovex 6678 . . . 4  |-  ( 0 [,) +oo )  e. 
_V
565, 22mgpress 18500 . . . 4  |-  ( (fld  e. 
_V  /\  ( 0 [,) +oo )  e. 
_V )  ->  (
(mulGrp ` fld )s  ( 0 [,) +oo ) )  =  (mulGrp `  (flds  ( 0 [,) +oo )
) ) )
5754, 55, 56mp2an 708 . . 3  |-  ( (mulGrp ` fld )s  ( 0 [,) +oo ) )  =  (mulGrp `  (flds  ( 0 [,) +oo )
) )
58 cnfldadd 19751 . . . . 5  |-  +  =  ( +g  ` fld )
595, 58ressplusg 15993 . . . 4  |-  ( ( 0 [,) +oo )  e.  _V  ->  +  =  ( +g  `  (flds  ( 0 [,) +oo ) ) ) )
6055, 59ax-mp 5 . . 3  |-  +  =  ( +g  `  (flds  ( 0 [,) +oo ) ) )
615, 28ressmulr 16006 . . . 4  |-  ( ( 0 [,) +oo )  e.  _V  ->  x.  =  ( .r `  (flds  ( 0 [,) +oo ) ) ) )
6255, 61ax-mp 5 . . 3  |-  x.  =  ( .r `  (flds  ( 0 [,) +oo ) ) )
63 ringmnd 18556 . . . . 5  |-  (fld  e.  Ring  ->fld  e.  Mnd )
641, 63ax-mp 5 . . . 4  |-fld  e.  Mnd
65 0e0icopnf 12282 . . . 4  |-  0  e.  ( 0 [,) +oo )
66 cnfld0 19770 . . . . 5  |-  0  =  ( 0g ` fld )
675, 24, 66ress0g 17319 . . . 4  |-  ( (fld  e. 
Mnd  /\  0  e.  ( 0 [,) +oo )  /\  ( 0 [,) +oo )  C_  CC )  ->  0  =  ( 0g `  (flds  ( 0 [,) +oo ) ) ) )
6864, 65, 10, 67mp3an 1424 . . 3  |-  0  =  ( 0g `  (flds  (
0 [,) +oo )
) )
6953, 57, 60, 62, 68issrg 18507 . 2  |-  ( (flds  ( 0 [,) +oo ) )  e. SRing 
<->  ( (flds  ( 0 [,) +oo )
)  e. CMnd  /\  (
(mulGrp ` fld )s  ( 0 [,) +oo ) )  e.  Mnd  /\ 
A. x  e.  ( 0 [,) +oo )
( A. y  e.  ( 0 [,) +oo ) A. z  e.  ( 0 [,) +oo )
( ( x  x.  ( y  +  z ) )  =  ( ( x  x.  y
)  +  ( x  x.  z ) )  /\  ( ( x  +  y )  x.  z )  =  ( ( x  x.  z
)  +  ( y  x.  z ) ) )  /\  ( ( 0  x.  x )  =  0  /\  (
x  x.  0 )  =  0 ) ) ) )
707, 35, 51, 69mpbir3an 1244 1  |-  (flds  ( 0 [,) +oo ) )  e. SRing
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   [,)cico 12177   Basecbs 15857   ↾s cress 15858   +g cplusg 15941   .rcmulr 15942   0gc0g 16100   Mndcmnd 17294  SubMndcsubmnd 17334  CMndccmn 18193  mulGrpcmgp 18489  SRingcsrg 18505   Ringcrg 18547  ℂfldccnfld 19746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-ico 12181  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-srg 18506  df-ring 18549  df-cring 18550  df-cnfld 19747
This theorem is referenced by:  xrge0slmod  29844  sge0tsms  40597
  Copyright terms: Public domain W3C validator