MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddge22np1 Structured version   Visualization version   Unicode version

Theorem oddge22np1 15073
Description: An integer greater than one is odd iff it is one plus twice a positive integer. (Contributed by AV, 16-Aug-2021.)
Assertion
Ref Expression
oddge22np1  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( -.  2  ||  N  <->  E. n  e.  NN  ( ( 2  x.  n )  +  1 )  =  N ) )
Distinct variable group:    n, N

Proof of Theorem oddge22np1
StepHypRef Expression
1 eleq1 2689 . . . . . . . 8  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( 2  x.  n )  +  1 )  e.  ( ZZ>= ` 
2 )  <->  N  e.  ( ZZ>= `  2 )
) )
2 nn0z 11400 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  n  e.  ZZ )
32adantl 482 . . . . . . . . . 10  |-  ( ( ( ( 2  x.  n )  +  1 )  e.  ( ZZ>= ` 
2 )  /\  n  e.  NN0 )  ->  n  e.  ZZ )
4 eluz2 11693 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  n
)  +  1 )  e.  ( ZZ>= `  2
)  <->  ( 2  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  e.  ZZ  /\  2  <_ 
( ( 2  x.  n )  +  1 ) ) )
5 2re 11090 . . . . . . . . . . . . . . . . 17  |-  2  e.  RR
65a1i 11 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN0  ->  2  e.  RR )
7 1red 10055 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN0  ->  1  e.  RR )
8 2nn0 11309 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  NN0
98a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN0  ->  2  e. 
NN0 )
10 id 22 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN0  ->  n  e. 
NN0 )
119, 10nn0mulcld 11356 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN0  ->  ( 2  x.  n )  e. 
NN0 )
1211nn0red 11352 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN0  ->  ( 2  x.  n )  e.  RR )
136, 7, 12lesubaddd 10624 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN0  ->  ( ( 2  -  1 )  <_  ( 2  x.  n )  <->  2  <_  ( ( 2  x.  n
)  +  1 ) ) )
14 2m1e1 11135 . . . . . . . . . . . . . . . . 17  |-  ( 2  -  1 )  =  1
1514breq1i 4660 . . . . . . . . . . . . . . . 16  |-  ( ( 2  -  1 )  <_  ( 2  x.  n )  <->  1  <_  ( 2  x.  n ) )
16 nn0re 11301 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN0  ->  n  e.  RR )
17 2pos 11112 . . . . . . . . . . . . . . . . . . . 20  |-  0  <  2
185, 17pm3.2i 471 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  e.  RR  /\  0  <  2 )
1918a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN0  ->  ( 2  e.  RR  /\  0  <  2 ) )
20 ledivmul 10899 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  RR  /\  n  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( 1  /  2 )  <_  n 
<->  1  <_  ( 2  x.  n ) ) )
217, 16, 19, 20syl3anc 1326 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN0  ->  ( ( 1  /  2 )  <_  n  <->  1  <_  ( 2  x.  n ) ) )
22 halfgt0 11248 . . . . . . . . . . . . . . . . . 18  |-  0  <  ( 1  /  2
)
23 0red 10041 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  NN0  ->  0  e.  RR )
24 halfre 11246 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  /  2 )  e.  RR
2524a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  NN0  ->  ( 1  /  2 )  e.  RR )
26 ltletr 10129 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0  e.  RR  /\  ( 1  /  2
)  e.  RR  /\  n  e.  RR )  ->  ( ( 0  < 
( 1  /  2
)  /\  ( 1  /  2 )  <_  n )  ->  0  <  n ) )
2723, 25, 16, 26syl3anc 1326 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN0  ->  ( ( 0  <  ( 1  /  2 )  /\  ( 1  /  2
)  <_  n )  ->  0  <  n ) )
2822, 27mpani 712 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN0  ->  ( ( 1  /  2 )  <_  n  ->  0  <  n ) )
2921, 28sylbird 250 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN0  ->  ( 1  <_  ( 2  x.  n )  ->  0  <  n ) )
3015, 29syl5bi 232 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN0  ->  ( ( 2  -  1 )  <_  ( 2  x.  n )  ->  0  <  n ) )
3113, 30sylbird 250 . . . . . . . . . . . . . 14  |-  ( n  e.  NN0  ->  ( 2  <_  ( ( 2  x.  n )  +  1 )  ->  0  <  n ) )
3231com12 32 . . . . . . . . . . . . 13  |-  ( 2  <_  ( ( 2  x.  n )  +  1 )  ->  (
n  e.  NN0  ->  0  <  n ) )
33323ad2ant3 1084 . . . . . . . . . . . 12  |-  ( ( 2  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  e.  ZZ  /\  2  <_  ( ( 2  x.  n )  +  1 ) )  -> 
( n  e.  NN0  ->  0  <  n ) )
344, 33sylbi 207 . . . . . . . . . . 11  |-  ( ( ( 2  x.  n
)  +  1 )  e.  ( ZZ>= `  2
)  ->  ( n  e.  NN0  ->  0  <  n ) )
3534imp 445 . . . . . . . . . 10  |-  ( ( ( ( 2  x.  n )  +  1 )  e.  ( ZZ>= ` 
2 )  /\  n  e.  NN0 )  ->  0  <  n )
36 elnnz 11387 . . . . . . . . . 10  |-  ( n  e.  NN  <->  ( n  e.  ZZ  /\  0  < 
n ) )
373, 35, 36sylanbrc 698 . . . . . . . . 9  |-  ( ( ( ( 2  x.  n )  +  1 )  e.  ( ZZ>= ` 
2 )  /\  n  e.  NN0 )  ->  n  e.  NN )
3837ex 450 . . . . . . . 8  |-  ( ( ( 2  x.  n
)  +  1 )  e.  ( ZZ>= `  2
)  ->  ( n  e.  NN0  ->  n  e.  NN ) )
391, 38syl6bir 244 . . . . . . 7  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  ( N  e.  ( ZZ>= ` 
2 )  ->  (
n  e.  NN0  ->  n  e.  NN ) ) )
4039com13 88 . . . . . 6  |-  ( n  e.  NN0  ->  ( N  e.  ( ZZ>= `  2
)  ->  ( (
( 2  x.  n
)  +  1 )  =  N  ->  n  e.  NN ) ) )
4140impcom 446 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  n  e.  NN0 )  ->  (
( ( 2  x.  n )  +  1 )  =  N  ->  n  e.  NN )
)
4241pm4.71rd 667 . . . 4  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  n  e.  NN0 )  ->  (
( ( 2  x.  n )  +  1 )  =  N  <->  ( n  e.  NN  /\  ( ( 2  x.  n )  +  1 )  =  N ) ) )
4342bicomd 213 . . 3  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  n  e.  NN0 )  ->  (
( n  e.  NN  /\  ( ( 2  x.  n )  +  1 )  =  N )  <-> 
( ( 2  x.  n )  +  1 )  =  N ) )
4443rexbidva 3049 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( E. n  e.  NN0  ( n  e.  NN  /\  (
( 2  x.  n
)  +  1 )  =  N )  <->  E. n  e.  NN0  ( ( 2  x.  n )  +  1 )  =  N ) )
45 nnssnn0 11295 . . 3  |-  NN  C_  NN0
46 rexss 3669 . . 3  |-  ( NN  C_  NN0  ->  ( E. n  e.  NN  (
( 2  x.  n
)  +  1 )  =  N  <->  E. n  e.  NN0  ( n  e.  NN  /\  ( ( 2  x.  n )  +  1 )  =  N ) ) )
4745, 46mp1i 13 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( E. n  e.  NN  (
( 2  x.  n
)  +  1 )  =  N  <->  E. n  e.  NN0  ( n  e.  NN  /\  ( ( 2  x.  n )  +  1 )  =  N ) ) )
48 eluzge2nn0 11727 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN0 )
49 oddnn02np1 15072 . . 3  |-  ( N  e.  NN0  ->  ( -.  2  ||  N  <->  E. n  e.  NN0  ( ( 2  x.  n )  +  1 )  =  N ) )
5048, 49syl 17 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( -.  2  ||  N  <->  E. n  e.  NN0  ( ( 2  x.  n )  +  1 )  =  N ) )
5144, 47, 503bitr4rd 301 1  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( -.  2  ||  N  <->  E. n  e.  NN  ( ( 2  x.  n )  +  1 )  =  N ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fl 12593  df-dvds 14984
This theorem is referenced by:  lighneallem3  41524
  Copyright terms: Public domain W3C validator