Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpaddltrbid Structured version   Visualization version   Unicode version

Theorem ogrpaddltrbid 29721
Description: In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 4-Sep-2018.)
Hypotheses
Ref Expression
ogrpaddlt.0  |-  B  =  ( Base `  G
)
ogrpaddlt.1  |-  .<  =  ( lt `  G )
ogrpaddlt.2  |-  .+  =  ( +g  `  G )
ogrpaddltrd.1  |-  ( ph  ->  G  e.  V )
ogrpaddltrd.2  |-  ( ph  ->  (oppg
`  G )  e. oGrp
)
ogrpaddltrd.3  |-  ( ph  ->  X  e.  B )
ogrpaddltrd.4  |-  ( ph  ->  Y  e.  B )
ogrpaddltrd.5  |-  ( ph  ->  Z  e.  B )
Assertion
Ref Expression
ogrpaddltrbid  |-  ( ph  ->  ( X  .<  Y  <->  ( Z  .+  X )  .<  ( Z  .+  Y ) ) )

Proof of Theorem ogrpaddltrbid
StepHypRef Expression
1 ogrpaddlt.0 . . 3  |-  B  =  ( Base `  G
)
2 ogrpaddlt.1 . . 3  |-  .<  =  ( lt `  G )
3 ogrpaddlt.2 . . 3  |-  .+  =  ( +g  `  G )
4 ogrpaddltrd.1 . . . 4  |-  ( ph  ->  G  e.  V )
54adantr 481 . . 3  |-  ( (
ph  /\  X  .<  Y )  ->  G  e.  V )
6 ogrpaddltrd.2 . . . 4  |-  ( ph  ->  (oppg
`  G )  e. oGrp
)
76adantr 481 . . 3  |-  ( (
ph  /\  X  .<  Y )  ->  (oppg
`  G )  e. oGrp
)
8 ogrpaddltrd.3 . . . 4  |-  ( ph  ->  X  e.  B )
98adantr 481 . . 3  |-  ( (
ph  /\  X  .<  Y )  ->  X  e.  B )
10 ogrpaddltrd.4 . . . 4  |-  ( ph  ->  Y  e.  B )
1110adantr 481 . . 3  |-  ( (
ph  /\  X  .<  Y )  ->  Y  e.  B )
12 ogrpaddltrd.5 . . . 4  |-  ( ph  ->  Z  e.  B )
1312adantr 481 . . 3  |-  ( (
ph  /\  X  .<  Y )  ->  Z  e.  B )
14 simpr 477 . . 3  |-  ( (
ph  /\  X  .<  Y )  ->  X  .<  Y )
151, 2, 3, 5, 7, 9, 11, 13, 14ogrpaddltrd 29720 . 2  |-  ( (
ph  /\  X  .<  Y )  ->  ( Z  .+  X )  .<  ( Z  .+  Y ) )
164adantr 481 . . . 4  |-  ( (
ph  /\  ( Z  .+  X )  .<  ( Z  .+  Y ) )  ->  G  e.  V
)
176adantr 481 . . . 4  |-  ( (
ph  /\  ( Z  .+  X )  .<  ( Z  .+  Y ) )  ->  (oppg
`  G )  e. oGrp
)
18 ogrpgrp 29703 . . . . . . 7  |-  ( (oppg `  G )  e. oGrp  ->  (oppg `  G )  e.  Grp )
196, 18syl 17 . . . . . 6  |-  ( ph  ->  (oppg
`  G )  e. 
Grp )
2019adantr 481 . . . . 5  |-  ( (
ph  /\  ( Z  .+  X )  .<  ( Z  .+  Y ) )  ->  (oppg
`  G )  e. 
Grp )
218adantr 481 . . . . 5  |-  ( (
ph  /\  ( Z  .+  X )  .<  ( Z  .+  Y ) )  ->  X  e.  B
)
2212adantr 481 . . . . 5  |-  ( (
ph  /\  ( Z  .+  X )  .<  ( Z  .+  Y ) )  ->  Z  e.  B
)
23 eqid 2622 . . . . . . 7  |-  (oppg `  G
)  =  (oppg `  G
)
24 eqid 2622 . . . . . . 7  |-  ( +g  `  (oppg
`  G ) )  =  ( +g  `  (oppg `  G
) )
253, 23, 24oppgplus 17779 . . . . . 6  |-  ( X ( +g  `  (oppg `  G
) ) Z )  =  ( Z  .+  X )
2623, 1oppgbas 17781 . . . . . . 7  |-  B  =  ( Base `  (oppg `  G
) )
2726, 24grpcl 17430 . . . . . 6  |-  ( ( (oppg
`  G )  e. 
Grp  /\  X  e.  B  /\  Z  e.  B
)  ->  ( X
( +g  `  (oppg `  G
) ) Z )  e.  B )
2825, 27syl5eqelr 2706 . . . . 5  |-  ( ( (oppg
`  G )  e. 
Grp  /\  X  e.  B  /\  Z  e.  B
)  ->  ( Z  .+  X )  e.  B
)
2920, 21, 22, 28syl3anc 1326 . . . 4  |-  ( (
ph  /\  ( Z  .+  X )  .<  ( Z  .+  Y ) )  ->  ( Z  .+  X )  e.  B
)
3010adantr 481 . . . . 5  |-  ( (
ph  /\  ( Z  .+  X )  .<  ( Z  .+  Y ) )  ->  Y  e.  B
)
313, 23, 24oppgplus 17779 . . . . . 6  |-  ( Y ( +g  `  (oppg `  G
) ) Z )  =  ( Z  .+  Y )
3226, 24grpcl 17430 . . . . . 6  |-  ( ( (oppg
`  G )  e. 
Grp  /\  Y  e.  B  /\  Z  e.  B
)  ->  ( Y
( +g  `  (oppg `  G
) ) Z )  e.  B )
3331, 32syl5eqelr 2706 . . . . 5  |-  ( ( (oppg
`  G )  e. 
Grp  /\  Y  e.  B  /\  Z  e.  B
)  ->  ( Z  .+  Y )  e.  B
)
3420, 30, 22, 33syl3anc 1326 . . . 4  |-  ( (
ph  /\  ( Z  .+  X )  .<  ( Z  .+  Y ) )  ->  ( Z  .+  Y )  e.  B
)
3523oppggrpb 17788 . . . . . 6  |-  ( G  e.  Grp  <->  (oppg
`  G )  e. 
Grp )
3620, 35sylibr 224 . . . . 5  |-  ( (
ph  /\  ( Z  .+  X )  .<  ( Z  .+  Y ) )  ->  G  e.  Grp )
37 eqid 2622 . . . . . 6  |-  ( invg `  G )  =  ( invg `  G )
381, 37grpinvcl 17467 . . . . 5  |-  ( ( G  e.  Grp  /\  Z  e.  B )  ->  ( ( invg `  G ) `  Z
)  e.  B )
3936, 22, 38syl2anc 693 . . . 4  |-  ( (
ph  /\  ( Z  .+  X )  .<  ( Z  .+  Y ) )  ->  ( ( invg `  G ) `
 Z )  e.  B )
40 simpr 477 . . . 4  |-  ( (
ph  /\  ( Z  .+  X )  .<  ( Z  .+  Y ) )  ->  ( Z  .+  X )  .<  ( Z  .+  Y ) )
411, 2, 3, 16, 17, 29, 34, 39, 40ogrpaddltrd 29720 . . 3  |-  ( (
ph  /\  ( Z  .+  X )  .<  ( Z  .+  Y ) )  ->  ( ( ( invg `  G
) `  Z )  .+  ( Z  .+  X
) )  .<  (
( ( invg `  G ) `  Z
)  .+  ( Z  .+  Y ) ) )
42 eqid 2622 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
431, 3, 42, 37grplinv 17468 . . . . . 6  |-  ( ( G  e.  Grp  /\  Z  e.  B )  ->  ( ( ( invg `  G ) `
 Z )  .+  Z )  =  ( 0g `  G ) )
4436, 22, 43syl2anc 693 . . . . 5  |-  ( (
ph  /\  ( Z  .+  X )  .<  ( Z  .+  Y ) )  ->  ( ( ( invg `  G
) `  Z )  .+  Z )  =  ( 0g `  G ) )
4544oveq1d 6665 . . . 4  |-  ( (
ph  /\  ( Z  .+  X )  .<  ( Z  .+  Y ) )  ->  ( ( ( ( invg `  G ) `  Z
)  .+  Z )  .+  X )  =  ( ( 0g `  G
)  .+  X )
)
461, 3grpass 17431 . . . . 5  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 Z )  e.  B  /\  Z  e.  B  /\  X  e.  B ) )  -> 
( ( ( ( invg `  G
) `  Z )  .+  Z )  .+  X
)  =  ( ( ( invg `  G ) `  Z
)  .+  ( Z  .+  X ) ) )
4736, 39, 22, 21, 46syl13anc 1328 . . . 4  |-  ( (
ph  /\  ( Z  .+  X )  .<  ( Z  .+  Y ) )  ->  ( ( ( ( invg `  G ) `  Z
)  .+  Z )  .+  X )  =  ( ( ( invg `  G ) `  Z
)  .+  ( Z  .+  X ) ) )
481, 3, 42grplid 17452 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( 0g `  G )  .+  X
)  =  X )
4936, 21, 48syl2anc 693 . . . 4  |-  ( (
ph  /\  ( Z  .+  X )  .<  ( Z  .+  Y ) )  ->  ( ( 0g
`  G )  .+  X )  =  X )
5045, 47, 493eqtr3d 2664 . . 3  |-  ( (
ph  /\  ( Z  .+  X )  .<  ( Z  .+  Y ) )  ->  ( ( ( invg `  G
) `  Z )  .+  ( Z  .+  X
) )  =  X )
5144oveq1d 6665 . . . 4  |-  ( (
ph  /\  ( Z  .+  X )  .<  ( Z  .+  Y ) )  ->  ( ( ( ( invg `  G ) `  Z
)  .+  Z )  .+  Y )  =  ( ( 0g `  G
)  .+  Y )
)
521, 3grpass 17431 . . . . 5  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 Z )  e.  B  /\  Z  e.  B  /\  Y  e.  B ) )  -> 
( ( ( ( invg `  G
) `  Z )  .+  Z )  .+  Y
)  =  ( ( ( invg `  G ) `  Z
)  .+  ( Z  .+  Y ) ) )
5336, 39, 22, 30, 52syl13anc 1328 . . . 4  |-  ( (
ph  /\  ( Z  .+  X )  .<  ( Z  .+  Y ) )  ->  ( ( ( ( invg `  G ) `  Z
)  .+  Z )  .+  Y )  =  ( ( ( invg `  G ) `  Z
)  .+  ( Z  .+  Y ) ) )
541, 3, 42grplid 17452 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( ( 0g `  G )  .+  Y
)  =  Y )
5536, 30, 54syl2anc 693 . . . 4  |-  ( (
ph  /\  ( Z  .+  X )  .<  ( Z  .+  Y ) )  ->  ( ( 0g
`  G )  .+  Y )  =  Y )
5651, 53, 553eqtr3d 2664 . . 3  |-  ( (
ph  /\  ( Z  .+  X )  .<  ( Z  .+  Y ) )  ->  ( ( ( invg `  G
) `  Z )  .+  ( Z  .+  Y
) )  =  Y )
5741, 50, 563brtr3d 4684 . 2  |-  ( (
ph  /\  ( Z  .+  X )  .<  ( Z  .+  Y ) )  ->  X  .<  Y )
5815, 57impbida 877 1  |-  ( ph  ->  ( X  .<  Y  <->  ( Z  .+  X )  .<  ( Z  .+  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100   ltcplt 16941   Grpcgrp 17422   invgcminusg 17423  oppgcoppg 17775  oGrpcogrp 29698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-dec 11494  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-ple 15961  df-0g 16102  df-plt 16958  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-oppg 17776  df-omnd 29699  df-ogrp 29700
This theorem is referenced by:  ogrpinvlt  29724
  Copyright terms: Public domain W3C validator