![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulgnn0cl | Structured version Visualization version Unicode version |
Description: Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. (Contributed by Mario Carneiro, 11-Dec-2014.) |
Ref | Expression |
---|---|
mulgnncl.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
mulgnncl.t |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mulgnn0cl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgnncl.b |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | mulgnncl.t |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | eqid 2622 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | id 22 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | ssid 3624 |
. . 3
![]() ![]() ![]() ![]() | |
6 | 5 | a1i 11 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 1, 3 | mndcl 17301 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | eqid 2622 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 1, 8 | mndidcl 17308 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 1, 2, 3, 4, 6, 7, 8, 9 | mulgnn0subcl 17554 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-seq 12802 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mulg 17541 |
This theorem is referenced by: mulgnn0dir 17571 mulgnn0ass 17578 mhmmulg 17583 pwsmulg 17587 odmodnn0 17959 mulgmhm 18233 srgmulgass 18531 srgpcomp 18532 srgpcompp 18533 srgpcomppsc 18534 srgbinomlem1 18540 srgbinomlem2 18541 srgbinomlem4 18543 srgbinomlem 18544 lmodvsmmulgdi 18898 assamulgscmlem2 19349 mplcoe5lem 19467 mplcoe5 19468 psrbagev1 19510 evlslem3 19514 ply1moncl 19641 coe1pwmul 19649 ply1coefsupp 19665 ply1coe 19666 gsummoncoe1 19674 lply1binomsc 19677 evl1expd 19709 evl1scvarpw 19727 evl1scvarpwval 19728 evl1gsummon 19729 pmatcollpwscmatlem1 20594 mply1topmatcllem 20608 mply1topmatcl 20610 pm2mpghm 20621 monmat2matmon 20629 pm2mp 20630 chpscmatgsumbin 20649 chpscmatgsummon 20650 chfacfscmulcl 20662 chfacfscmul0 20663 chfacfpmmulcl 20666 chfacfpmmul0 20667 cpmadugsumlemB 20679 cpmadugsumlemC 20680 cpmadugsumlemF 20681 cayhamlem2 20689 cayhamlem4 20693 deg1pw 23880 plypf1 23968 lgsqrlem2 25072 lgsqrlem3 25073 lgsqrlem4 25074 omndmul2 29712 omndmul3 29713 omndmul 29714 isarchi2 29739 hbtlem4 37696 lmodvsmdi 42163 ply1mulgsumlem4 42177 ply1mulgsum 42178 |
Copyright terms: Public domain | W3C validator |